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Abstract

Programming against APIs is difficult. Application Programming Interfaces are often
large, complicated, and specify implicit contracts which are not readily documented.
Therefore, programmers often make mistakes when using API methods, which may
lead to bugs and severe complications involving crashes, data loss, or security vulner-
abilities.

To alleviate such difficulties, a lot of research has gone into automatically inferring
API rules and usage patterns, and statically detect violations of such rules and patterns
in a target project. Such tools are often called API misuse detectors. The state-of-the-art
misuse detectors use pattern mining to infer correct usages of APIs, and identify
misuses of the API as usages that deviate from the mined patterns. Recent work
has explored graph-based representations to model such usages, but neglects inter-
procedural analysis. This causes a significant number of false positives in their findings,
due to missing graph elements that are present in transitively called methods. Such
false positives decrease the precision of the tools, and is one of the reasons they are
still difficult to use in practice.

In this dissertation, we present two main contributions to the field of static API
misuse detection. As our first contribution, we incorporate inter-procedural analysis
into graph-based pattern mining and violation detection through a process called
graph inlining. This embeds the graph representation of a called method into the graph
representation of its caller. To properly integrate the callee’s graph, we must carefully
consider code semantics, and thus, our approach considers many different types of
control flow and data flow in its inlining algorithm. To customise this inlining process,
we develop six inlining strategies that differ in the way they handle recursive calls,
duplicate calls, and calls to methods that do not contain any direct API usage. These
strategies lead to different patterns, and thus to different detected misuses.

Our second contribution is a general filtering algorithm to eliminate inter-procedural
false positives. It is capable of removing incorrect violations due to missing pattern
elements that are present in the call context surrounding the violating method, as well
as removing duplicate violations that may occur due to inter-procedural analysis. This
filtering algorithm inspects the callers and callees of a method to determine whether
the violation reported in this method is likely a true misuse, and is based on the key
insight that if a callee contains a violation, then all of its callers contain the same
violation after inlining, and thus, the callers contain duplicated violations.

We evaluate our approach on a dataset of nine real Java projects containing actual
misuses of APIs. We find that our approach effectively mines inter-procedural patterns,
allowing it to identify new misuses, and also correctly eliminates inter-procedural
false positives from its findings. We identify a number of important limitations of
our work, including the prevalence of false positive misuses due to uncommon but
correct alternative usages, as well as the increased cost of pattern mining and violation
detection in the larger graphs produced by inlining. We investigate these limitations
further, and pave the way to overcoming these issues in the future.
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1 | Introduction

1.1 Motivation

DRY: Don’t Repeat Yourself. This phrase is engraved in the mind of any competent
programmer, and leads one to use abstractions, functions, modules, etc. in order not
to repeat oneself. Some such abstractions are common across all projects of a certain
language, such as data structures like linked lists, sets, or dictionaries; I/O operations,
e.g. reading from an input stream or writing to a file; or date and time manipulations.
To alleviate the need to re-implement each and every one of such abstractions for use in
a new project, language designers and developers alike create, maintain, and provide
libraries or frameworks, offering third-party Application Programming Interfaces (API)
that can be used to implement the desired behaviour in a program. The availability
of such libraries is enormous: Apache’s Maven central artefact repository currently
indexes over 180.000 packages for JVM-based programming languages, the Python
Package Index (PyPI) contains over 200.000 third-party packages for the Python
programming language at the time of writing, and the Node Package Manager (npm)
lists upwards of one million packages for use in the Node.js runtime environment for
the JavaScript language.1

Developers make extensive use of such libraries, but often make mistakes in their
implementation due to the difficulty of correctly using an API and integrating it into a
project (Scaffidi, 2006). Root causes for such mistakes include a confusing API design,
a lack of documentation, or pressing deadlines during development. Additionally,
APIs often specify protocols that its users should follow for correct usage, yet these
protocols are sometimes difficult to understand and keep track of (Sushine, Herbsleb
& Aldrich, 2015). Failing to properly use an API may result in program crashes, data
loss, or security vulnerabilities (Amann, Nadi, Nguyen, Nguyen & Mezini, 2016; Egele,
Brumley, Fratantonio & Kruegel, 2013; Fahl et al., 2012; Georgiev et al., 2012).

Such problems led to an influx of research on development tools to warn program-
mers of potential bugs in their code. The earliest of such work (e.g., Hovemeyer &
Pugh, 2004; Flanagan et al., 2002) uses a set of predetermined rules to statically detect
violations in program code. However, continuously maintaining such rules for an
ever-growing set of popular third-party APIs is practically infeasible. Thus, more recent
research (e.g., T. T. Nguyen, Nguyen, Pham, Al-Kofahi & Nguyen, 2009; Monperrus
& Mezini, 2013; Wasylkowski, Zeller & Lindig, 2007; Amann, Nguyen, Nadi, Nguyen
& Mezini, 2019; Wasylkowski & Zeller, 2011; Acharya & Xie, 2009) instead focuses on
mining patterns of API usage in program code, essentially relying on a programmer to
break the DRY principle and repeat API usages sufficiently to be considered a pattern.
A key insight is given by Engler, Chen, Hallem, Chou and Chelf (2001), who theorise

1Statistics gathered from https://libraries.io/.

1
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Chapter 1. Introduction

that bugs are unlikely deviations from normal program behaviour, or, in other words,
deviations from a pattern.

A recent study by Amann, Nguyen, Nadi, Nguyen and Mezini (2017) quantifies
the effectiveness of four misuse detectors for Java, by running them on MUBench,
their evaluation suite with a dataset of real projects containing actual misuses. Their
work shows that these detectors have an extremely low precision and recall when run
under non-perfect training conditions. The state-of-the-art misuse detector MUDe -
tect (Amann et al., 2019) uses the insights gained from this study to improve upon
these results, leading to a precision of 21.9% and recall of 20.9% when mining patterns
from a single project. However, these results are still fairly low, which is in part caused
by the absence of inter-procedural analysis: Over 15% of the false positives are due
to intra-procedural analysis, where the detector for example reports missing program
elements that are present in a transitively called method. Furthermore, MUDetect
fails to find actual misuses when the misuse involves instance fields, since it deliberately
removes such usages to prevent false positives due to intra-procedural analysis.

Bug detectors of the previous decade sometimes include inter-procedural checks
during detection, or use inter-procedural pattern mining (Li & Zhou, 2005; Ramanathan,
Grama & Jagannathan, 2007a; Lindig, 2016). In more recent years, this practice has dis-
solved, and most of the tools developed in the current decade employ intra-procedural
analysis only. One exception is JSM iner (H. V. Nguyen, Nguyen, Nguyen & Nguyen,
2014), but their research focuses mostly on mining patterns, rather than detecting
misuses. Thus, we need to devise new ways to incorporate inter-procedural analysis
into the current API misuse detection techniques.

1.2 Objectives and Contributions

The main goal of our work is to alleviate the intra-procedural woes of the state-of-the-art
misuse detectors. We divide this into two subgoals: First, we aim to prevent reporting
false positives caused by missing program elements that are in fact present in the caller
or callee of a program function. Second, we attempt to mine inter-procedural patterns of
API usage which crosses method boundaries in a boundary-agnostic manner. This leads
to patterns that capture more meaningful API usages, and allows implementations
to be scattered across methods in arbitrary ways. To achieve our goal, we extend
the state-of-the-art detector MUDetect by incorporating inter-procedural analyses.
Concretely, our contributions are as follows:

– A graph inlining algorithm which embeds API usage graph representations of
first-party callee methods into the graph of their caller. The resulting graphs,
called inlined API usage graphs, capture larger views of API usage in a program as
they encode the bodies of the caller, its callees, and potentially transitive callees.
The graphs are method boundary-agnostic: They do not make any claims as to
which program element should be present in which method body, thereby allow-
ing arbitrary scattering of implementations, abstractions, method overloading,
etc. The inlined API usage graph representation is general: Although we use it
specifically to detect misuses, it can equally be used in pattern mining and API
usage recommendation;

– Six unique inlining strategies that customise which method calls are inlined
into a caller’s graph, and up to which depth our algorithm should inline. These
strategies differ in their handling of recursive calls, duplicate calls, and callees

2



1.3. Overview of the Dissertation

that lack direct API usage. Different strategies may lead to graphs of different
sizes, and may thus significantly impact the time taken to mine patterns and
detect violations;

– A general, inter-procedural filtering strategy which removes both false positives
in a method if the method’s caller ensures that the pattern is fully instantiated, as
well as duplicated reports that may arise due to our inlining;

– An evaluation of the effectiveness of our approach at removing inter-procedural
false positives, as well as the precision and recall of the different inlining strategies,
and the effect of the inlining and the choice of inlining strategy on the running
time of our tool. We run our tool on a subset of the MUBench dataset and
measure precision, recall, recall upper bound, and running time for each of
our six strategies, and compare our results to MUDetect, our baseline, while
providing an extensive discussion of the differences.

1.3 Overview of the Dissertation

The remainder of this dissertation is structured in the following manner. We start by
introducing the reader to the field of misuse detection in Chapter 2. In Section 2.1, we
first introduce the three main mining techniques employed by existing tools: Frequent
itemset mining, frequent subsequence mining, and frequent subgraph mining. Sec-
tion 2.2 continues by providing an extensive overview of previous work, categorised
according to their capabilities. Afterwards, Section 2.3 describes the evaluation suite
MUBench, which we use to evaluate our approach. Here, we additionally describe
its dataset, the performance of four state-of-the-art tools on the suite, and insights
gained from previous evaluations. Then, Section 2.4 reviews existing approaches to
inter-procedural analysis in mining and misuse detection, and relates these to our work.
Finally, Section 2.5 concludes by summary.

Chapter 3 continues our literature review by describing MUDetect, the tool
our research extends to incorporate inter-procedural analysis. To provide the reader
with a thorough understanding of the API usage graph representation, which is
extensively used in our tool, we first describe its structure, node types, and edge
types, in Section 3.1, whereas Section 3.2 details the construction of such graphs. Next,
Section 3.3 explains how these API usage graphs are used in pattern mining and
violation detection. We then review the evaluation of MUDetect on the MUBench
evaluation suite in Section 3.4, and describe the main root causes of false positives and
false negatives. Finally, Section 3.5 concludes this chapter.

Afterwards, Chapter 4 describes our inlining approach, inlining strategies, and
inter-procedural filter algorithm. First, we introduce our extensions to the API usage
graph representation in Section 4.1, and describe the differences to the original API
usage graph by example. Section 4.2 explains our inlining algorithm, the different
strategies, and the process of inlining a single method. We continue in Section 4.3
by describing our filtering algorithm, by first providing examples of common inter-
procedural false positives, and then describing our rules and heuristics for eliminating
these. We conclude this chapter in Section 4.4.

We describe our experimental evaluation in Chapter 5. Sections 5.1–5.3 cover the
three experiments we perform to measure our detector’s efficiency at finding API
misuses. In Section 5.4, we introduce and perform an experiment to gain insights into
the performance costs of inlining and inter-procedural analysis. In each of these sections,

3



Chapter 1. Introduction

we first describe our experimental setup, then present the results of the experiment,
compare the results to a baseline, and finally provide an elaborate discussion of our
findings. We list the threats to the validity of our experiments in Section 5.5. Finally,
Section 5.6 concludes this chapter.

We conclude this dissertation in Chapter 6, where we provide an overall summary of
our work in closing. We additionally provide an overview of future research possibilities
in Section 6.1, and end this dissertation in Section 6.2.

4



2 | Background

Since the late 1990s, a large amount of research has gone into detecting bugs in API
usages. The earliest of this work used a-priori rules, patterns, or templates provided
by the user to statically determine violations. For example, F indBugs, a static bug
detector for Java by Hovemeyer and Pugh (2004), ships with over ten likely bug
patterns, ranging from null-pointer dereference checked by a simple data flow analysis,
to inconsistencies in synchronisation. Similarly, Flanagan et al. (2002) detect bugs in
Java programs using static formal verification and theorem proving. Using a number
of ground truth rules, such as “a null-pointer should never be dereferenced”, and
programmer-supplied annotations specifying contracts on methods and class invariants,
their tool ESC/Java can statically infer likely bugs as program code that violates the
contracts or rules.

Ultimately, however, such approaches increase the burden on either the user or the
programmer of a software artefact providing an API. A user needs to be aware of likely
bug patterns to generate rules, programmers need to add annotations to their source
code. Hence, research often focuses more on automatically inferring rules from one
or more projects, and validating these rules against a target project afterwards. The
majority of these approaches follow the same high-level overview: First, they extract an
abstract model of the source code, then, this model is mined for frequently occurring
patterns, and finally, the mined patterns are utilised to find violations in the project’s
code base. However, note that some tools do not perform explicit mining, or use a
radically different approach overall.

Although many tools follow the same general overview, there are many different
properties according to which bug detectors can be classified, such as their model
representation, mining technique, capabilities of finding different types of bugs, etc.
The most important of these is the distinction between static and dynamic analysis.
Dynamic analysis tools employ runtime instrumentation to monitor a program, its
state and its flow. As an example, DynaM ine (Livshits & Zimmermann, 2005) mines
revision histories of a code base to find likely coding patterns, and validates these
patterns by running the program and observing how frequently they occur at runtime.
It can then find violations of the patterns very accurately, since a violation of a pattern
is guaranteed to happen, as seen in the dynamic analysis. Another example of dynamic
analysis tools is Eraser (Savage, Burrows, Nelson, Sobalvarro & Anderson, 1997),
which detects race conditions by monitoring the state of locking on memory locations
shared across threads, and ensuring that consistent locking behaviour is used.

In this dissertation, we will instead focus on tools relying solely on static analysis
to detect usage violations and hence, likely bugs. We first introduce commonly-used
mining techniques in Section 2.1, and afterwards describe a large range of existing tools
representing the state-of-the-art in misuse detection and pattern mining, categorised

5



Chapter 2. Background

according to their capabilities, in Section 2.2. Section 2.3 covers a misuse detection
benchmark, which has been used to evaluate a number of tools, and is also the
benchmark on which our tool has been evaluated. In this section, we summarise the root
causes of low precision and recall of existing detectors, and identify that a lack of inter-
procedural analysis relates to a significant portion of the detectors’ false positives and
false negatives. Thus, in Section 2.4, we explore existing approaches to incorporating
inter-procedural analysis into pattern mining and violation detection tools, forming
the inspiration of our work. Finally, Section 2.5 concludes with a summary.

2.1 Mining Usage Patterns

There exist many methods of mining for patterns in large datasets, depending on the
shape of the data and the purpose that needs to be fulfilled. In general, a pattern
is a frequently occurring phenomenon in the dataset. The support of a pattern is
the frequency of its occurrence, and hence the term “frequently” constitutes that
the support of a phenomenon exceeds some user-provided minimum support value.
Mathematically, we will refer to the support of a pattern P in relation to a dataset D as
sD(P). The exact formula to calculate the support depends on the representation of the
dataset, pattern, and the mining technique itself.

We can further generally define a pattern as closed when there exists no larger
pattern that subsumes the pattern and retains the same support. Mathematically, we
say a pattern P is closed in relation to a dataset D when{

P ′ | P ◦ P ′ ∧ sD(P) = sD(P ′)
}
= ∅.

The operator ◦ denotes the subpattern relation, and is again defined in terms of the
actual representation of patterns.

In the remainder of this section, we consider three different mining techniques:
Frequent itemset mining, its related association rule mining, and a formalisation based
on formal concept analysis; frequent subsequence mining and its related sequence asso-
ciation rule mining; and frequent subgraph mining. For each of the mining techniques,
we will provide an actual example of its usage.

2.1.1 Frequent Itemset Mining

A lot of the previous research (such as Michail, 1999, 2000; Li & Zhou, 2005; Thum-
malapenta & Xie, 2011; Ramanathan, Grama & Jagannathan, 2007b) employs frequent
itemset mining to detect sets of items which frequently occur simultaneously in the
dataset. Frequent itemset mining is often applied in shopping basket analysis (Agrawal,
Imieliński & Swami, 1993) to mine for association rules, such as “If a customer buys
bread, she is likely to buy butter as well.”

To illustrate, consider three transactions of three unique customers:

– Customer 1 buys bread, milk, and butter;

– Customer 2 buys bread, butter, and eggs;

– Customer 3 buys butter, flour, and chocolate.

6



2.1. Mining Usage Patterns

void foo() {
lock(l);
// ...
unlock(l);

}

(a) An instance

void bar() {
lock(l);
// ...
// no unlock

}

(b) A missing method call

void baz() {
unlock(l);
// ...
lock(l);

}

(c) Wrong call order

Figure 2.1 – Contrived example snippets of API calls lock and unlock on a lock l in a
program written in a C-like language.

We can consider the collection of items bought in a transaction as an individual itemset,
and the itemsets of all transactions to be the dataset. In this dataset, there exist three
itemsets that occur at least twice: {bread}, with a support of two, {butter}, with a
support of three, and {bread,butter}, with a support of two. The latter two are closed,
since they cannot be extended to retain the same support, while the first itemset can be
extended to obtain the last itemset with the same support.

In this simple example, we can see that customers often buy bread and butter
together. However, this does not provide us any causal information: Do customers buy
bread because they buy butter, or do they buy butter because they buy bread? This is
where association rules come in. We can see that when a customer buys bread, they
always buy butter, and when a customer buys butter, they only buy bread in two thirds
of the cases. Hence, with a confidence of 100% in relation to our small dataset, we can
say that the purchase of bread leads to a purchase of butter, and with a confidence of
66.67%, we can say that the purchase of butter leads to a purchase of bread.

Let us define this more formally. Our definitions of itemsets and association rules is
based on the definitions given by Agrawal et al. (1993), adapted to be more consistent
with definitions given in other works, such as Michail (1999). Consider an alphabet
of items I = {i1, i2, . . . }. In the example, I = {bread,butter, eggs,milk, flour, chocolate}.
Using this alphabet, we can define an itemset Ik ⊆ I as an unordered set of items of the
alphabet. An itemset database ISD, equivalent to the set of transactions in the example,
is a set of itemsets {I1, I2, . . . , In}, i.e. ISD ⊆ I2. The support of an itemset Ip ∈ I2 is
defined as follows:

sISD
(
Ip
)
=

∣∣∣{Ik ∈ ISD | Ip ⊆ Ik
}∣∣∣ .

In other words, the support of an itemset is the number of itemsets in the database that
contain this itemset.

Association rules are then propositional formulae of the form

x1 ∧ · · ·∧ xi ⇒ y1 ∧ · · ·∧ yj,

with x ∈ X, y ∈ Y, X ⊆ I, Y ⊆ I and X∩ Y = ∅, which can be written more compactly as
X⇒ Y. Such rules state that if items xi ∈ X are present in an itemset Ik, the items yj ∈ Y

must be present as well. Support is also defined for association rules: An association
rule X⇒ Y has a support value of sISD(X∪ Y). This association rule is said to hold with
confidence c% if c% of the itemsets that contain X in the database ISD, also contain Y.

Mining such association rules can be decomposed into two steps: Mining frequent
itemsets of minimum support smin, and generating rules from these itemsets with
a minimum confidence cmin% (Agrawal & Srikant, 1994). Many algorithms exist for
efficiently mining frequent itemsets (e.g., Burdick, Calimlim & Gehrke, 2001; Grahne &
Zhu, 2003) and association rules (e.g., Agrawal & Srikant, 1994).

As a second example of association rule mining, consider the function defini-
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• •

• •

•

lo
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foo

bar

baz
gap

Figure 2.2 – Example of Figure 2.1 as a cross-table.

tions given in Figure 2.1. Assume lock and unlock are API functions which ob-
tain and release a lock on their argument, respectively. Here, we define the alpha-
bet I = {lock, unlock}, and the itemsets Ifoo = {lock, unlock}, Ibar = {lock}, and
Ibaz = {lock, unlock}. With closed frequent itemset mining with minimum support
smin = 2, we determine that lock and unlock are frequently called in the same function
body, and lock is frequently called in general. Note that unlock is not present as a
frequent call, since its frequent itemset is not closed. We can generate two association
rules from these insights: lock⇒ unlock with confidence 66.67%, and unlock⇒ lock,
with confidence 100%. If we were to use these association rules for anomaly detection,
we could report a likely bug in function bar, since it violates the first rule. The con-
fidence of the rule can then be used to determine how likely the bug actually is. Note
that function baz is not reported as a violation in any case, even though we implicitly
know it is likely a bug because of the wrong order of calls. This is because we do not
consider an order relation. However, we could change the representation of the items
to include such information, called temporal properties (Wasylkowski et al., 2007). For
example, it could state that a call to unlock is preceded by a call to lock.

An alternative mining technique is based on Formal Concept Analysis, as used
by Lindig (2016); Wasylkowski et al. (2007); Wasylkowski and Zeller (2011). A key
insight is that itemsets represent a binary relation between the transaction (in our
example, a function definition) and its features (the items in the itemset). These
relations can graphically be modelled as a cross-table, which contains a dot whenever
a transaction has a certain feature. We can then permute this table’s rows and columns
to group the dots into blocks that constitute patterns, which unifies patterns with their
instances. The support of a pattern is then defined as the height of the block, while
the width of a pattern is defined as the width of the block, i.e. the number of features
involved in the pattern. Since a pattern is a set of features, with its instances being
a set of transactions, there can be subpatterns which are subsets. These subpatterns
are blocks with larger width, but smaller height. Likely violations of patterns can be
identified as vertically-neighbouring blocks with lower width, leaving a gap in the
larger block.

Figure 2.2 shows the example given in Figure 2.1 as such a cross-table. Using this
graphical representation, we can clearly identify the pattern that a call to lock is paired
with a call to unlock. This is marked in a dark gray shading in the illustration. The
graphical representation also clearly shows the support of the pattern, i.e. the height
of the shaded block. In the light gray shaded portion, we can see a violation of the
pattern: A narrower, but taller block, which leaves a gap which if filled, would enlarge
the pattern.

Since this technique is mostly a formalisation of frequent itemset mining, we do

8



2.1. Mining Usage Patterns

not formally describe its representation or mining algorithm. We refer the interested
reader to the work by Lindig (2016) for a formal description of the representation and
algorithm, and to Ganter and Wille (1997) for the mathematical foundations of formal
concept analysis.

2.1.2 Frequent Subsequence Mining

As we have seen in the previous section, frequent itemset mining can be used to detect
patterns of frequently occurring sets of items, as well as causal relations between these
items. However, frequent itemset mining cannot mine for temporal relations between
items, and instead relies on its items encoding such temporal relations itself. To include
such temporal information, existing tools (such as Xie & Pei, 2006; Zhong, Xie, Zhang,
Pei & Mei, 2009; Thummalapenta & Xie, 2009; Acharya & Xie, 2009) instead mine for
sequences of items, using frequent subsequence mining.

Agrawal and Srikant (1995) provide an example of the applications of mining for
sequential patterns in terms of a set of customer transactions in a video rental store. A
pattern may consist of customers renting “Star Wars” movies, by first renting “Episode
IV — A New Hope”, then renting “Episode V — The Empire Strikes Back”, and finally
renting “Episode VI — Return of the Jedi”. However, customers may rent other movies
in between, and the same pattern would still be exhibited. Customers may also rent the
same movie twice, for example, for an annual Star Wars marathon. The authors define
item sequences as ordered sequences of itemsets, since a customer may rent both a
Star Wars movie as well as another movie in the same transaction. In practice, however,
the tools using frequent subsequence mining consider item sequences to simply be
sequences of single items, which is equivalent to the original definition with singleton
itemsets.

To formally define sequences and frequent subsequence mining, we generalise
the definition given by Thummalapenta and Xie (2009) and include concepts from
the definition given by Agrawal and Srikant (1995). Item sequences are sequences of
events of the form 〈e1, e2, . . . , en〉, where ei ∈ I, i.e. the event ei is an item from the
item alphabet, thus an item may occur multiple times in the sequence. Sequences are
denoted more succinctly as S = e1e2 . . . en.

A sequence Si = e1e2 . . . en is a subsequence of Sj = f1f2 . . . fm, denoted Si v Sj, if
there exists integers 1 6 k1 < k2 < · · · < kn 6 m such that ∀1 6 l 6 n : el = fkl

. In other
words, all events in Si must be present in Sj, in the same order as they are present in
Si, but there may be gaps.

Sequences are stored in a sequence database SDB, containing tuples (sid,S), where
sid is a unique sequence identifier and S is the sequence. The support of a sequence S

with regards to the sequence database SDB is defined as

sSDB(S) =
∣∣∣{(sid,Si)|S v Si

}∣∣∣ ,

i.e. the number of super-sequences of S in the database. Definitions of frequent se-
quences and closed frequent sequences follow the same definitions as given in the
beginning of the section, where the subpattern operator ◦ is the subsequence operator
v.

Using item sequences, we can define sequence association rules (Thummalapenta &
Xie, 2009) in a similar manner to association rules in itemsets. A sequence association
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void qux() {
foo();
if (condition) {

bar();
} else {

baz();
}

}

Figure 2.3 – An example function body in a C-like language with branches in control flow,
leading to its call order being a partial order.

rule is a propositional formula of the form

(e1 . . . em)∧ (f1 . . . fn)⇒ (g1 . . . gk)∧ (h1 . . . hl),

meaning that if an item sequence contains the subsequences e1 . . . em and f1 . . . fn, it
should also contain the subsequences g1 . . . gk and h1 . . . hl.

Recall the example given in Figure 2.1 of the previous section. From these examples,
we can generate three item sequences representing call orders: lock; unlock for
function foo, lock for function bar, and unlock; lock for function baz. Assume that
the item sequence of foo is frequent in the dataset because of many other functions
containing the same subsequence, while the other two sequences are not. Using frequent
subsequence mining, we could then identify anomalies in both bar, because of the
missing call, and baz, because of the wrong call order.

Note that frequent subsequence mining requires a total order on the items in a
sequence. For call order, this can be problematic, since function bodies often only
provide a partial call order of its callees in the presence of branches in control flow.
Consider for example the function body given in Figure 2.3, which contains a branch
based on a boolean variable condition. We cannot provide a total call order for the
callees here, since bar is not called before baz, nor is baz called before bar. Hence, we
can only define a partial order, where foo is called before both bar and baz, and bar
and baz are incomparable. To provide a total order to frequent subsequence mining, one
could instead opt for a path-sensitive analysis, which will provide two item sequences
for the function qux: foo; bar and foo; baz. Alternatively, one can opt for frequent
subgraph mining instead, as shown in the next subsection.

2.1.3 Frequent Subgraph Mining

If we only have a partial order on items, we can opt to represent our collection of items
as a labelled directed acyclic graph. Furthermore, frequent itemset mining and frequent
subsequence mining are often applied to collections of homogeneous items, resulting
in these techniques only being able to represent patterns of one kind of phenomena,
e.g., call order, or caller-callee relations. If we instead want to represent more complex
patterns, for example, patterns incorporating both syntactical constructs such as loops,
if-then-else statements, or try-catch constructs, as well as API calls and call order, we
need a richer representation. This can be achieved using labelled graphs, where a label
on a vertex represents the called API function or syntactic construct, and edges can
represent temporal orders, data dependencies, or any other relation that is interesting
to mine for.

Discovering patterns in graph-based representations is performed through frequent
subgraph mining, and is implemented in a number of previous works (e.g., T. T. Nguyen
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et al., 2009; Chang, Podgurski & Yang, 2007; Amann et al., 2019). Our definition of the
problem is a generalisation of the definition given by T. T. Nguyen et al. (2009). We are
given a graph database GDB = {G1,G2, . . . }, where Gi is a labelled directed multigraph
with vertex set V(Gi) and edge set E(Gi) with labels for both nodes and edges. Note
that we keep our definition general, allowing graphs to contain multiple edges between
two nodes, and being assigned labels for both its nodes and edges. This generality is
necessary to cover all possible graph representations used in the tools.

Consider a candidate pattern graph Gc. An occurrence of Gc in a graph Gi ∈ GDB

is an induced subgraph SGi of Gi which is label-isomorphic to Gc. We additionally
say that two occurrences of SGi1 and SGi2 of Gc in Gi are independent if their vertex
sets are disjoint sets, i.e. the two occurrences share no nodes. The support sGDB(Gc)

of candidate pattern graph Gc in relation to the database GDB is the number of
independent occurrences of Gc in the graphs of the database. This means that a
candidate pattern can be supported by an instance multiple times, if the instance
contains multiple occurrences of the pattern. Graph patterns can be closed, following
the same definition as given in the beginning of this section, where the ◦ operator now
denotes that a graph is an independent occurrence of another graph.

Since subgraph mining needs to solve the subgraph isomorphism problem, which
is NP-complete, it follows that frequent subgraph mining is expensive. Mining is often
performed through a-priori pattern growth techniques (Inokuchi, Washio & Motoda,
2000), which involves a number of steps. First, given a number of frequent subgraphs
(initially containing no nodes), it generates possible extensions to these candidates,
leading to new candidates. This is the growth step. Afterwards, candidate patterns are
pruned based on viability: If it can already be determined that a candidate pattern will
not lead to a meaningful final pattern, it can be removed from consideration in order to
reduce the search space. This pruning phase is vital to make frequent subgraph mining
feasible: The number of possible extensions can increase exponentially at each step of
candidate generation.

The a-priori approach is based on the key insight that if a candidate pattern is
infrequent, none of its extensions can be frequent, and algorithms thus prune candidates
when they drop below the minimum support value. To determine the frequency of
candidate patterns, the patterns first need to be clustered into isomorphic groups, after
which the frequency can be determined for a single group. Note that candidates in the
same cluster may be obtained from different graphs, or through different extensions of
the same graph. Hence, afterwards, candidates are split up again for the next round
of pattern growth. When none of the candidates can be extended further to larger
frequent subgraphs, a final frequency calculation is performed, and the patterns are
obtained.

As an example, consider the graphs given in Figure 2.4. In these graphs, nodes
represent calls to a function, where the target function is given as a node label. Edges
represent the partial order in calls. A branching point in the graph represents a branch
in the control flow of the body, and the condition for taking this branch is annotated as
an edge label. Figure 2.4a is a representation of the partial call order of the function
body given in Figure 2.3. Figure 2.4b is the representation of a similar function that
additionally calls exit after the conditional. Figure 2.4c is the representation of a
similar function that calls bug instead of baz. We can identify a frequent subgraph with
a support of 2, as represented in Figure 2.4d. The first two example graphs contain an
instance of this pattern, while the third example contains a partial overlap. This overlap
is shown graphically in Figure 2.4e, where overlapping nodes and edges between
the pattern and the target example are shown in green. The green portion represents
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foo

bar baz

[condition] [!condition]

(a) First example graph.

foo

bar baz

exit

[condition] [!condition]

(b) Second example graph.

foo

bar bug

[condition] [!condition]

(c) Third example graph, contain-
ing a bug.

foo

bar baz

[condition] [!condition]

(d) A potential pattern mined
from the examples.

foo

baz

bar bug

[condition]

[!condition]

[!condition]

(e) Overlap between the target
and the buggy example.

Figure 2.4 – Example of graph representations of method bodies derived from the body in
Figure 2.3, a related graph pattern, and a violation.

a common label-isomorphic subgraph of the pattern and target. Note that the call
to baz in the pattern is absent in the target, which is represented in red. The gray
portion represents nodes and edges in the target that cannot be found in the pattern.
The violation can be found in the red portion, since features that are required by the
pattern are not present in the target. The gray portion is not necessarily a violation,
however, since the call to exit in the second example would similarly not be found
in the pattern. Having superfluous elements in the graph cannot be regarded as a
violation of a pattern, as patterns are obtained as frequent subgraphs of the methods’
graphs themselves. Thus, if we were to report a violation because of a superfluous
element, we would essentially require all of a project’s methods to be identical to other
methods to not be considered a violation.

2.2 Overview of Existing Bug Detectors

We now introduce a number of tools related to detecting bugs in API usages and
classify them according to their capabilities. Note that detecting violations in API
usage is closely related to the fields of mining and recommending API usage patterns.
Indeed, these three fields share a common goal of finding meaningful similarities
in API usage across one or multiple projects. Pattern mining focuses on identifying
these similarities and representing them as patterns, which can then later be used
for analysis, recommendation or violation detection. API usage recommendation uses
these similarities to infer likely code completions given a partial implementation, while
API usage violation detection attempts to flag likely bugs in the usages.

Hence, these three fields often share the same techniques to reach their goal, many
of which have been covered in the previous section. For example, given a number of
mined API usage patterns, one can attempt to detect instances of these patterns in a
target code base. Imperfect instances, i.e. code snippets that are missing one or more
elements of the pattern, may be API usage violations. However, not every imperfect
instance is a real violation, leading to the possibility of false positives. Thus, existing
tools use a range of different ranking strategies, based on e.g. the support of the pattern
or the distance between the pattern and target snippet.

12



2.2. Overview of Existing Bug Detectors

Patterns can also be used in usage recommendation, where tools can suggest a
pattern if the partially implemented code snippet shares enough similarity with it.
However, usage recommendation often relies on statistical methods to rank recom-
mendations, such that the recommendations the programmer would likely find more
useful end up ranking higher. To this end, an often used representation is a prob-
abilistic model (T. T. Nguyen, Pham, Vu & Nguyen, 2015; Bielik, Raychev & Vechev,
2016; A. T. Nguyen & Nguyen, 2015) which may, for example, assign probabilities
to the occurrence of a certain call sequence and can then rank its code completion
recommendations according to these probabilities. Such models can be used for bug
detection as well, such as by querying the model to retrieve the probability of a certain
call sequence, and flagging a likely violation in the sequence if the probability of its
occurrence is lower than a certain threshold.

Because of the relations between these three research fields, we will additionally
describe certain tools that could be capable of detecting API usage violations, even
though they are not designed to do so. We categorise these tools according to their
general capabilities: Some tools are able to detect missing method calls, some other tools
are able to detect malformed call sequences, containing both missing and misplaced
calls. A number of tools specialise in detecting missing and malformed semantic
constructs, such as missing conditions or faulty exception handling. They may also be
able to detect missing or misplaced method calls if these method calls are involved
in their targeted semantic constructs. The final category contains tools that are able
to detect all of these: Missing or misplaced calls, as well as missing or malformed
semantic constructs.

2.2.1 Detecting Missing API Calls

A common cause of bugs in a program is a missing call to a certain API method,
such as the absence of a call to the hasNext method of a Java Iterator to ensure a
subsequent element exists before a calling the next method to retrieve this element.
Several detectors specialise in identifying such missing calls in a method body.

PR-M iner (Li & Zhou, 2005) detects missing API calls in C function bodies. It
generates association rules using frequent itemset mining on a function body’s program
elements, namely variables, function calls, and data types. These rules then specify
that when a set of such program elements is used in a function body, another set
of program elements must be used as well. Violations are flagged when a method
body uses the program elements in the antecedent of the rule, but not all program
elements in the consequent, and the rule has a sufficiently high confidence. PR-M iner
additionally performs an inter-procedural detection by searching a method’s callers or
callees if a program element is missing, in order to reduce false positives. Note that
since PR-M iner considers calls to any function in its itemsets, it is able to mine usage
patterns relating to both first-party and third-party APIs.

Colibri/ML (Lindig, 2016) detects missing calls using formal concept analysis. It
considers the caller-callee relation of the whole program as its input relation, which
is then transformed into a cross-table, as described in Section 2.1.1. Missing calls can
then easily be identified as “gaps” in this cross-table. Notably, Colibri/ML performs
inlining on its input relation, by adding, for each function, the cross-table entries of
its callees as well. In other words, the resulting cross-table contains entries for each
direct and indirect callee of this function. Additionally, if every caller of the function
calls the same other function, such an entry is added as well. In the end, the cross-table
then contains all pairs of functions that are always called together in a program. Hence,
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Colibri/ML is able to mine inter-procedural patterns involving both first-party and
third-party functions, and naturally detect violations inter-procedurally as well, since
it unifies patterns, its instances, and violations of the pattern.

DMMC (Monperrus & Mezini, 2013) detects missing method calls in Java as
violations of the majority rule. It extracts type usages from every method body in a
source program. A type usage for variable x is a triple (T ,C,M), where T is the type
of the variable, C is the context, i.e. the signature of the method in which x is present,
and M is the set of methods called on x. Hence, type usages do not include call order
or control structure information. Type usages participate in two binary relations. Two
type usages for variables x and y are exactly-similar if they have the same type, the
same set of methods, and are used in a similar context. They are almost-similar if they
have the same type, are used in a similar context, and y contains one extra method, i.e.
Mx ⊂My and |Mx| = |My|+ 1.

Each type usage is assigned a strangeness score or S-score, which is based on the
number of exactly-similar and almost-similar type usages. Following the majority
rule, if a type usage x has many almost-similar type usages, but a low number of
exactly-similar type usages, it is a strange usage, as it diverges from the majority. Such
strange type usages are flagged as potential misuses. DMMC also recommends which
method call is likely missing from the type usage. It ranks the potential fixes using the
majority rule again: The more almost-similar type usages contain the extra method, the
higher the rank as a potential fix.

CodeWeb (Michail, 1999, 2000) is an API usage pattern miner which defines
items as reuse relationships in object-oriented class hierarchies. Concretely, it adds
items for class inheritance, class instantiation, method overriding, and method calling.
Association rules can then state that when a class inherits a certain base class, it should
also override a certain method of the base class, or when it calls a certain method, it
should also call another method. Although CodeWeb does not specifically detect
misuses in class code, their patterns could potentially be used to detect missing method
calls. Not only could their rules identify missing calls in the presence of other calls in
a method body, it could also identify missing method definitions in the presence of
inheritance, for example, when a framework specifies that inheriting classes should
always override a specific instance method.

PARSEWeb (Thummalapenta & Xie, 2007) is an API usage pattern miner and
recommender that answers queries of the form “Source object type → Destination
object type” by providing a sequence of method calls that lead from an object of the
source type to an object of the destination type. Such patterns can potentially be used
to identify missing calls as well. The tool extracts call sequences by transforming an
AST to a directed acyclic graph, then extracting the shortest path in the DAG that
connects an object of the source type to an object of the target type. Sequences are
clustered according to their similarities, and ranked according to their frequency (size
of the cluster) and sequence length. Although method invocations are returned as a
sequence, the clustering considers sequences with a different order to be similar, and
hence ordering information is lost in the end.

2.2.2 Detecting Call Order Violations

The previously covered detectors are able to identify missing API calls, but are unable
to identify API call order violations as they do not specifically encode temporal
order relations among calls. For example, even though they are able to detect a
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missing call to hasNext of a Java Iterator, they are unable to identify the call order
constraint that hasNext must be called before next in order for a program to be safe.
For instance, if a code snippet calls both of these methods in a loop, but fails to
call hasNext on the first iteration to handle the case where an iterator is empty, the
previously covered detectors do not identify a violation. To detect call order violations,
detectors need to encode relations that specify that a call is always executed before
or after another call. This is often done through frequent itemset mining by encoding
temporal properties, or frequent subsequence mining which already encodes ordering
information. Additionally, one tool is able to detect call order violations using a
probabilistic model that represents likely call sequences.

Call Order Violation Detection Using Itemsets

JADET (Wasylkowski et al., 2007) builds further on top of Colibri/ML to detect
such violations in call order. To do this, it first generates finite state machines to model
method bodies, where states are locations in a method body and transitions are labelled
with the program statement, such as a method call or variable assignment, that takes
place between the two locations. From these models, it extracts temporal properties in
the form of m ≺ n, stating that m may be called before n. It then mines for patterns
among these temporal properties using formal concept analysis, with an input relation
that relates a program method to such a property extracted from the method. Because
of formal concept analysis, this mining immediately provides violations of the patterns
as well. Violations are flagged if there is sufficient confidence, which is based on the
ratio of potential violations to pattern instances.

Tikanga (Wasylkowski & Zeller, 2011) further extends JADET by adopting
Computation Tree Logic (Clarke, Emerson & Sistla, 1986) formulae as the representation
of features, rather than simple call order properties. This allows it to capture how
objects are used before being passed to a method call, and generate more complicated
constraints when compared to JADET. As a result, Tikanga can generate more
expressive call order constraints and therefore detect more complicated violations, but
its base capabilities are the same as JADET’s.

Call Order Violation Detection Using Item Sequences

Chronicler (Ramanathan et al., 2007a) detects missing and misplaced calls in C
function bodies. Through path-sensitive analysis, it generates call precedence con-
straints between two calls in a single function body, for example, a f← b indicates that
a call to b is always preceded by a call to a in the function f. Compositions of these
rules are memoised as function summaries for each function declaration, allowing
inter-procedural analysis by extending precedence constraints at call sites using the
function summary of the callee. Chronicler then uses frequent subsequence mining
to detect patterns in these control-flow constraints. As such, it can find both missing
calls and call order violations when the mined constraints are unsatisfied.

MAPO (Xie & Pei, 2006; Zhong et al., 2009) mines for frequent call sequences
as patterns in API usage. For each method in the project, it extracts sequences of
method calls, incorporating inter-procedural mining by inlining call sequences. During
extraction of call sequences from a method body, when MAPO encounters a first-party
method call, it performs a lookup of the method, scans this new method’s body for
call sequences, and extends the call sequence with this new method’s calls rather than

15



Chapter 2. Background

void m(Iterator<String> it) {
if (it.hasNext()) {

String first = it.next();
String second = it.next();

}
}

Figure 2.5 – Example of a superfluous call in a Java method.

the original call itself. This inlining process is recursive, and call sequences therefore
incorporate API call sequences of transitively called methods as well. The end condition
for this recursive process differs for the two versions of MAPO, and is discussed in
more detail in Section 2.4. The resulting API call sequences are mined using frequent
subsequence mining. Although MAPO makes no attempt at detecting misuses of these
frequent call sequences, a detector based on its patterns may be able to detect both
missing and misplaced method calls.

The first version of MAPO (Xie & Pei, 2006) is path-insensitive: It extracts sequences
in call-site order, ignoring conditional statements and control flow, thereby inducing a
total order on API calls, which can easily be fed into the frequent subsequence miner.
The second version of MAPO (Zhong et al., 2009) performs a path-sensitive extraction,
extracting a sequence for each path through a method body, accounting for control flow
structures such as conditions and loops. Furthermore, before frequent subsequence
mining, the second version clusters API call sequences according to the fully qualified
name of the method from which the sequence was extracted, and the methods called
in the snippet. This clusters snippets that likely exhibit the same behaviour, based
on similarities in their method name, class name, and involved API methods. Using
this clustering, the second version of MAPO can mine different patterns for different
programming contexts involving the same methods. For each of the clusters, it runs
frequent subsequence mining separately to generate patterns, which are later fed into
a recommender system that can be queried for relevant patterns.

Call Order Violation Detection Using Probabilistic Models

DroidAssist (T. T. Nguyen et al., 2015) is an API usage recommender for Android
projects. It trains a Hidden Markov Model of API usage (HAPI) using call sequences
extracted from graph-based representations called groums (see Section 2.2.4) in a
path-sensitive manner. The HAPI can then be used to recommend the next method call
in a partial implementation of an API usage. The authors note that this HAPI can be
used to detect misuses, by querying the probability of a certain method call sequence
and flagging the sequence as a violation if the probability is very low. However, this
detection strategy has not been evaluated. An interesting property of DroidAssist
is that, in addition to detecting missing and misplaced method calls, it is able to detect
superfluous calls. Consider for example the duplicated call to the next method of an
iterator, shown in Figure 2.5. None of the previously covered detectors, nor any of
the detectors that are yet to be covered, can identify a violation: Both calls to next
are preceded by a call to hasNext, and the call to hasNext is always followed by a
call to next. If the HAPI is properly trained, it will assign a very low probability to a
duplicated call to next, and can therefore identify a violation.
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2.2.3 Detecting Neglected Conditions and Error Handling

APIs often require certain conditions to be satisfied before a method may be called.
Examples include certain arguments that may not be null, or receiver objects that must
be in a certain state. Failure to adhere to these conditions may result in undefined
behaviour or crashes, leading to bugs in the program. Furthermore, API methods
can fail due to external conditions, such as non-existent files or timeouts in network
connections, and signal the caller of these failures either by returning specific values to
the caller (e.g., non-zero return values in C), or raising an exception. Failure to handle
such errors correctly may lead to serious bugs, such as memory leaks by neglecting
to free memory on a program path, inconsistent states in external resources by e.g.
forgetting to close a file handle or improper rollback of transactions in a database,
or even program crashes due to uncaught exceptions or continued use of data in
undefined states.

Thus, proper condition checks and exception handling are vital for the correctness
and stability of a program, yet are often a source of bugs. Various tools have been
developed to detect anomalies in these semantic constructs. Note that these tools
often are also able to detect missing or misplaced calls, but in a less general context
compared to the previous tools, and only identify such misuses when pertaining to
their specifically targeted semantic construct.

Detecting Missing and Faulty Conditions

Alattin (Thummalapenta & Xie, 2011) detects missing conditions surrounding API
call sites, accounting for the many different ways in which a condition can be specified.
For example, when iterating over a Java collection, one can either use the hasNext
method on an iterator, or maintain a separate counter and check its value against the
size of the collection itself. To account for these alternatives, Alattin extracts for
each call site to an API method Fk, the conditions surrounding the call site. As an
example, for the method Iterator.next, such condition check may be “boolean check
on return value of Iterator.hasNext before call to Iterator.next”. It then mines
these extracted conditions for rules of the form

P1 ∨ · · ·∨ Pi ∨A1 ∨ · · ·∨Aj.

In this formula, P1, . . . ,Pi are frequent rules, and A1, . . . ,Aj are infrequent alternative
rules.

The tool mines such rules in two phases for each API method Fk. For each distinct
call site of Fk, the extracted conditions are stored as an itemset in the itemset database
ISDFk

. In the first phase, Alattin mines this database using frequent itemset mining,
which generates the frequent patterns P1, . . . ,Pi. In the second phase, it partitions
the database into two disjunct databases based on the previously-mined patterns.
The positive itemset database PSDFk

contains the itemsets that contain a frequent
pattern, the negative itemset database NSDFk

contains the itemsets that do not contain
a frequent pattern. Then, it performs another pass of frequent itemset mining on the
negative itemset database, leading to the alternative patterns A1, . . . ,Aj, which are
frequent in NSDFk

, but infrequent in ISDFk
. Finally, this leads to a list of frequent

patterns and infrequent alternative patterns, which can be regarded as an association
rule of the form Fk ⇒ P1 ∨ · · ·∨ Pi ∨A1 ∨ · · ·∨Aj, stating that for a call to Fk, one of
the patterns must hold. A violation is flagged if a call site of Fk matches none of the
frequent patterns or infrequent alternative patterns.
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Ramanathan et al. (2007b) extend the Chronicler tool, covered in Section 2.2.2,
and focus on detecting missing and faulty conditions. As in the original tool, their
work extracts precedence constraints among API calls. Additionally, they extract data
flow properties for data values involved in API calls, such as comparisons involving
the variable, which they translate into data constraints. As in Chronicler, frequent
subsequence mining is applied on the precedence constraints, but an additional frequent
itemset mining pass is performed on the data constraints. As a result, their tool can
detect both patterns in call order as well as common constraints on the call arguments.
Using these patterns, they detect neglected and flawed conditions on variables involved
in an API call.

Chang et al. (2007) detect missing and malformed conditions by modelling a
program as a Program Dependence Graph (PDG) (Ferrante, Ottenstein & Warren, 1987).
A program dependence graph is a graph that represents two types of dependencies
between program statements: Data dependencies, as identified using definition-use
analysis, and control dependencies, where a statement is control-dependent on another
statement if the latter controls the branch in which the former resides. Conditional rules
are represented as graph minors of PDGs, and mined using a combination of frequent
itemset mining and frequent subgraph mining. Frequent itemset mining is used to
determine the node labels that are frequent enough to occur in a frequent subgraph,
thereby reducing the search space. After graph minor patterns are mined, they are
presented to the user for validation, and confirmed patterns are used in violation
detection by identifying subgraphs of the PDG that are similar, but not isomorphic to,
the pattern.

Detecting Missing and Malformed Exception Handling

CAR-M iner (Thummalapenta & Xie, 2009) specialises in mining patterns in exception-
handling code and subsequently detecting violations. The authors identify that certain
exception-handling routines are only necessary under certain normal control flow
scenarios. For example, when interacting with a database, the code for setting up
the database connection may be identical for different types of database operations.
Transaction rollback is only necessary if the operation modifies the database, whereas
merely querying the database does not require a transaction rollback. To properly
distinguish such scenarios, CAR-M iner generates sequence association rules of the
form (

C1
c . . . C

n
c

)
∧Ca ⇒ C1

e . . . C
m
e .

Such rules specify that a function call Ca should be followed by a sequence of function
calls C1

e . . . C
m
e when Ca is preceded by a sequence of function calls C1

c . . . C
n
c . In our

database example, the sequence C1
c . . . C

n
c corresponds to the database connection setup,

Ca corresponds to a database update call, and C1
e . . . C

m
e corresponds to the transaction

rollback in exception-handling code.

To mine such rules, the tool first generates an exception flow graph, an extended
form of control flow graph which includes edges to represent exceptional flow. Using
this exception flow graph, CAR-M iner generates normal and exceptional control
flow traces. It then extracts the call sequences C1

a . . . Cn
a from normal control flow traces,

and the exception-handling call sequences C1
e . . . C

m
e from exceptional control flow

traces. Using frequent subsequence mining on the extracted normal and exceptional
call sequences, they can generate the previously described sequence association rules.
The patterns are then used to detect violations, which are detected in a similar manner
to detectors using normal association rules.
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Acharya and Xie (2009) also detect missing and faulty error-handling code. Using
push-down model checking, they extract inter-procedural program traces for normal
control flow and exceptional control flow as finite state machines. From these traces,
they extract usage scenarios by considering definition-use data flow information in
order to generate data dependent call sequences. The data dependence information
is used to separate potentially interlaced traces, so that exceptional flow stemming
from API usage can be isolated. They then mine these call sequences using frequent
subsequence mining, and use them to detect violations using another round of push-
down model checking. False positives are removed through reachability analysis, to
exclude error cases that cannot occur.

Weimer and Necula (2005) mine patterns in exception-handling code using finite
state automata to represent programming rules. They limit themselves to two-state
machines, to generate rules that remain simple, and can be accepted or rejected by users,
rather than requiring debugging or editing. The states of these finite state machines are
events, i.e. calls, leading to rules that specify that e.g. close can only be called when a
resource is open, and open can only be called if it is closed. Hence, it can also identify
redundant calls as violations. They require their mined finite state machines to have
their second event occur in at least one, but not all exception-handling traces. This
allows them to mine rules that are important to the program, since it occurs at least
once, but has errors, since there are cases where it does not occur.

2.2.4 Detecting General Violations

The previous approaches focus on detecting one type of violations, and limit their
representations to consider only one kind of facts. One exception is the work by
Ramanathan et al. (2007b), which uses two separate representations and two separate
mining techniques, but limits itself to detecting malformed conditions. Using richer
representations that capture both temporal order properties, data dependencies, and
multiple kinds of program elements, a tool can detect both missing and misplaced
calls, missing or malformed conditions, and missing or malformed exception handling.
The representation of choice for many of the tools described in this section is a graph,
which is often mined with frequent subgraph mining.

Detecting Violations Using Graphs

GrouM iner (T. T. Nguyen et al., 2009) represents method bodies of a code base
as a graph-based object usage model (groum). A groum is a directed acyclic graph
with labelled nodes and unlabelled edges, generated for a single method in the pro-
gram. Nodes represent actions, such as method calls or constructor calls, and control
structures, such as if or while. Node labels then convey information about the node
itself: An action node carries the name of the called method as its label, while control
nodes are labelled according to the control structure they represent. Edges represent a
temporal usage order and data dependency between two nodes: Two nodes A and B

are connected by a directed edge A→ B if A is used before B, and there exists a data
dependency between A and B.

GrouM iner uses frequent subgraph mining using the a-priori mining algorithm
to detect patterns in the groums of method bodies. In order to check for graph
isomorphism in the algorithm, it uses Exas feature vectors (H. A. Nguyen, Nguyen,
Pham, Al-Kofahi & Nguyen, 2009) as an approximate metric of graph similarity. If
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two graphs have the same Exas feature vector, they are very likely to be isomorphic.
An Exas feature vector can be thought of as a signature of a graph: It generates hash
values for each node and each path up to a certain length in the graph, and counts the
occurrences of these hash values in the graph. Since hash values can collide, so can
feature vectors, which is why it is an approximation.

The tool detects violations of patterns as infrequent inextensible subgraphs of a
pattern graph. A graph G is said contain a usage anomaly of pattern P if it contains
an occurrence G ′ which is a subgraph of P, but cannot further be extended to be
isomorphic to P, and G ′ rarely occurs as a pattern on its own. It can detect such
violations efficiently because infrequent inextensible subgraphs are encountered during
frequent subgraph mining and retained for the purpose of violation detection.

MUDetect (Amann et al., 2019) builds further on GrouM iner by enriching the
representation to include data values, data flow relations, synchronisation information,
and exception-handling information, leveraging insights gained from a study on the
effectiveness of existing misuse detectors (Amann et al., 2017), on which we go into
more detail in Section 2.3. Their resulting representation, called an API Usage Graph
(AUG), is a labelled directed acyclic multi-graph, where both nodes and edges are
labelled, generated intra-procedurally for each method body in a project. Nodes can
either be action nodes, which may be method calls, construction invocations, variable
assignments, etc.; or data nodes, representing data entities such as variables, objects
and constants. Edges can be of multiple classes, representing either control flow or
data flow.

AUGs are mined for patterns using frequent subgraph mining, in a near-identical
way to GrouM iner. MUDetect defines misuses of APIs as strict subgraphs of
patterns, and detects such misuses by computing overlaps between a target graph T

and a pattern graph P. Violation detection is done in an independent phase so that the
tool can find all alternative overlaps between a pattern and a target, thereby being able
to filter out false positives caused by alternative patterns. Additionally, considering
detection as a separate phase allows MUDetect to mine patterns from multiple
independent projects, thus increasing the accuracy and likelihood of correctness of
patterns. Detected violations are further filtered according to heuristics to remove
common false positives, and are finally ranked according to one of multiple possible
ranking strategies. We go into more detail on MUDetect, its AUG representation,
and algorithms in Chapter 3.

B igGroum (Mover, Sankaranarayanan, Olsen & Chang, 2018), another extension
to GrouM iner, mines for patterns in Android API usages employing a different
approach. Their central challenge is to scale groum mining horizontally, mining for
patterns in a large corpus of projects, relating to the large API surface that is the
Android SDK. They extend the groum representation to include data nodes and data
flow definition and use edges. Before mining for subgraphs, they cluster the groums
based on the API methods it calls, which reduces the search space for frequent subgraph
mining. They further define the relation of graph embedding, denoted A � B, a special
case of subgraph isomorphism that allows for flexibility with transitive edges. Two
graphs A and B are isomorphic if A � B and B � A. Using these definitions, they reduce
the graph embedding problem to a SAT problem by encoding it into a propositional
formula ϕ, which is satisfiable if and only if A � B. This propositional formula can
then be fed into a SAT solver.

They then cluster groums into bins of isomorphic groums, which are used to
construct a lattice based on the embedding relation. Using this lattice and the frequency
of the bins, they categorise each bin as popular, isolated or anomalous. A bin is popular
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if its frequency is sufficiently high, and is considered a pattern. A bin is anomalous
if its groums are strictly embedded in a pattern, but the bin is infrequent. Finally, a
bin is isolated if it is neither popular nor anomalous, meaning that it is not embedded
in another bin and the groum occurs infrequently. Violations may then be found as
anomalous bins.

JSM iner (H. V. Nguyen et al., 2014) is a tool that mines inter-procedural patterns
in JavaScript code using a graph-based representation called JSModel, based on
groums. This tool is similar to ours in the sense that it is able to mine inter-procedural
patterns from graph-based representations. Inter-procedural analysis in a JSModel
stems from its ability to represent a related function’s body in the graph. For example,
when a function call is modelled in their graph representation, the corresponding
function’s body is included in the graph and linked to the call through inclusion
edges. This is a solution to one of many challenges in JavaScript pattern mining: Event
handlers and callbacks. A lot of JavaScript code bases make extensive use of both
anonymous and named functions to pass as data to other functions, which later invoke
the function. In order to mine meaningful patterns in the presence of callback-passing
style, the model needs to represent the body of the callback function as well. When
mining for usage patterns, JSM iner additionally prioritises inclusion edges in an
attempt to mine inter-procedural patterns.

The main difference between JSM iner and our approach is that our approach is
boundary-agnostic. We do not separate function bodies of callees or use specific edges
to represent such information, allowing our tool to mine usage patterns regardless of
how its implementation is scattered across method bodies. Although JSM iner may
be able to be mine boundary-agnostic patterns, we cannot confirm this. Furthermore,
the JSModel representation is closely related to groums, while our representation of
method bodies and patterns builds upon AUGs. Even though AUGs are essentially
based on groums, they contain more diverse information by using more concrete node
and edge representations that can aid in differentiating correct usages from misuses.
Finally, JSM iner’s evaluation as a misuse detector is very sparse, and leaves a lot to
the imagination.

Detecting Misuses Using Probabilistic Models

GraLan (A. T. Nguyen & Nguyen, 2015) is a graph-based statistical language model
used for code completion and API recommendation, based on groums. Contrary to
DroidAssist (T. T. Nguyen et al., 2015), this model includes all of the information
present in a groum, i.e. it also encodes control structures. A trained GraLan model
could therefore be used to detect violations, by querying it to retrieve the probability
that a certain groum occurs. If this probability is sufficiently low, a violation could be
flagged.

PHOG (Bielik et al., 2016) is another probabilistic language model for code. It gen-
eralises probabilistic context-free grammars to probabilistic higher order grammars. If a
language can be parsed using a context-free grammar, one can generate a probabilistic
context-free grammar by counting the frequency with which each production rule is
used to parse a training set of programs. However, such probabilistic context-free gram-
mars are shown to be ineffective at making meaningful suggestions. A probabilistic
higher order grammar instead takes the context of the expected code suggestion loca-
tion into account, and makes recommendations based on the frequency of production
rules used in a similar context. As with the previously-covered probabilistic models,
we may be able to exploit such a model to report violations if the likelihood of a certain
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statement given its context is sufficiently low.

Detecting Misuses Using Mutation Analysis

MutApi (Wen et al., 2019) is an API usage violation detector which detects violations
using mutation analysis rather than pattern mining. Their motivation is two key
insights: A misuse is often a mutant of a correct usage, and deviation from a pattern is
too simple of an assumption to be considered a real misuse. Rather than identifying
patterns in correct usage of an API, MutApi attempts to identify patterns in misuses
of an API. To identify such misuse patterns, it applies mutation analysis by mutating
known correct usages with a number of possible mutation operators. Such operators
include removing exception-handling code, removing conditions, flipping relational
operators, etc. Determining whether a mutation leads to an actual misuse is done by
running the considered project’s test suite on the mutant and analysing resulting stack
traces of failed tests to determine whether the test failure is due to a misuse in the API.
If it is, the misuse is modelled in a domain-specific grammar called structured call
sequences, which are API call sequences with certain syntactic operators, such as try-
catch and if-then-else statements. Finding misuses then corresponds to matching these
misuse patterns. Although MutApi achieves high precision and recall, it struggles to
find misuses when the test suite is of low quality and cannot kill mutants, and cannot
find violations altogether if a project has no test suite. Note also that, contrary to all
previously covered tools, MutApi does not rely solely on static analysis, and instead
requires dynamic analysis to mine its misuse patterns, in the form of running a test
suite and observing the results. However, their detection is fully static still, since it
involves matching the misuse patterns to the source code of target projects.

2.3 Evaluating API Misuse Detectors

Evaluating misuse detectors to get an idea of their performance when it comes to
detecting actual misuses in real programs relies on such information being readily
available. In order to help researchers evaluate their tools, the misuse detection bench-
marking suite MUBench (Amann et al., 2016) has been created. Its dataset contains
89 identified misuses across 33 projects and a developer survey, of which over two
thirds may lead to crashes in the program. To test tools on this benchmark, it provides
a pipeline which automatically fetches the project’s source code from version control
systems, compiles the project and invokes the detector on this project. The pipeline
offers three distinct experiments to measure a detector’s precision, its recall, and its
recall upper bound, i.e. its recall under perfect training and detection conditions.

The experiments measuring precision and recall run the detectors in full on each of
the projects. Therefore, the detector can train its inner mechanism, regardless of actual
representation, from the project’s source code, and then detect misuses in the same
project. Reported violations can then be cross-checked by reviewers against known
misuses identified in the dataset, which facilitates the computation of precision and
recall. By running different detectors on the same dataset, comparing detectors is made
possible, not only in statistics such as running time, precision, and recall, but also
regarding which misuses are missed by one detector, but reported by another.

In the experiment measuring recall upper bound, for each misuse identified in the
dataset, a corresponding correct usage is crafted. A detector is provided this single
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Recall Upper Bound

Detector Precision Conceptual Empirical Recall

DMMC 9.9% 28.1% 23.4% 20.8%

JADET 10.3% 29.7% 23.4% 5.7%

Tikanga 11.4% 29.7% 20.3% 13.2%

GrouM iner 0.0% 75.0% 48.4% 0.0%

Table 2.1 – The results obtained by Amann et al. (2017) of precision, recall, and conceptual
and empirical recall upper bound of four existing detectors.

correct usage to train with, and then provided the source code of the misuse. This
simulates perfect training conditions, where every misuse can have a correct usage
provided for it, and hence the detector can find the misuse. This experiment allows for
evaluating the detector’s internal representation of patterns and targets, as well as its
mining and detection algorithms.

Using the benchmark dataset in MUBench, the authors later classified each of
their identified misuses into MuC (Amann et al., 2017), the API-Misuse Classification,
a taxonomy of misuses. MuC follows an orthogonal design, classifying misuses both
in terms of their involved element (method call, condition, iteration, or exception
handling) and the type of misuse (missing or redundant). Conditions are further
divided according to the type of condition, such as null checks, or synchronisation.

The classification is then used to provide a conceptual classification of twelve exist-
ing detectors, each of which are covered in the previous section. This classification is
based on the conceptual capabilities of the detector, rather than real-world perform-
ance. For example, they found that none of the detectors are able to handle missing
synchronisation conditions, since none of the detectors capture such information.

The authors then select four misuse detectors to run empirically on the data-
set: DMMC (Monperrus & Mezini, 2013), JADET (Wasylkowski et al., 2007), Tik -
anga (Wasylkowski & Zeller, 2011), and GrouM iner (T. T. Nguyen et al., 2009).
The eight other detectors are not selected, because they either cannot handle general
Java code, or rely on defunct services such as Google Code Search. We replicate their
results in Table 2.1. Their empirical evaluation shows that all four of these detectors
have extremely low precision (less than 12% in all cases) when applied to real-world
projects, achieve fairly low recall, and that their conceptual capabilities exceed their
empirical recall upper bound. Although conceptually able to detect misuses of a certain
classification, in actuality the detectors often fail to do so. Most surprising is Grou -
M iner, which has a high conceptual recall upper bound and clearly outranks the
other detectors in its empirical recall upper bound, but fails to correctly detect any
misuse.

Given the outcome of the various experiments for the detectors, they then investigate
the root causes for low precision and recall, and make a number of observations. They
identify six root causes for false positives: (a) Uncommon usages that are correct,
but too infrequent to mine as patterns; (b) Imprecise static analysis, including a lack
of inter-procedural analysis, leading to imprecise patterns or imprecise detection;
(c) Alternative usages, causing detectors to report a violation that is an instance of an
alternative pattern; (d) Method bodies using their own API to implement functionality;
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(e) Implicit dependencies between object; and (f) failure to distinguish call multiplicities.

As an example of the fourth cause, partial usages, a Java Collection may use its add
method to implement addAll, and does not have to satisfy the contracts a client needs
to oblige. This may lead to a false positive if the detector does not distinguish self-usage
from client usage. The fifth cause, implicit semantic dependencies, is prevalent when
a client iterates over two collections of the same size. A size check is only necessary
on the first collection, but detectors may flag violations due to the missing size check
on the second collection, since it does not capture implicit semantic dependencies
between the two collections. Finally, as an example of the last cause, consider Java’s
StringBuilder, which has an append method that may be called arbitrary many times.
Some detectors may mine patterns where this method is called multiple times, and
report violations when it is called only once, which is a false positive.

The researches also determine three root causes for false negatives, as identified in
the recall upper bound experiment: (a) Poor representations failing to capture sufficient
information to distinguish misuses from correct usages; (b) poor matching, by not
considering semantics of the code or the representation; and (c) imprecise static analysis
leading to missing information that make detectors unable to match a misuse to a
correct usage. As an example of the first cause, a representation may fail to distinguish
between overloaded methods, or fail to capture concrete constant and literal values in
call arguments, leading it to believe its representation of the misuse is identical to the
pattern. Not considering semantics of code and representation, as the second cause of
false negatives, includes failing to match subtype relations in method call receivers, or
failing to match a pattern to a target due to call order violations. A concrete example
of the final cause is GrouM iner, which fails to identify the static receiver type of the
result of a chained method call, and therefore fails to relate a pattern to a target.

Additionally, the authors observe that detectors lack strong ranking strategies and
therefore fail to push true positives to the top of their results. Finally, a lack of correct
usage examples often prevents patterns from being mined and therefore violations
from being detected. Integrating cross-project mining may help alleviate this problem.

Their findings are vital to improve the state-of-the-art of misuse detection, and
many of their insights have been applied in the creation of MUDetect (Amann et
al., 2019), their subsequent work. However, we note that a prevalent source of false
positives and false negatives relate to intra-procedural analysis. For example, detectors
can easily get fooled if a call they believe is missing, is actually present in the body of a
first-party callee, or if a call that is missing in the body of a method is in reality always
called by the method’s callers. Secondly, the issue related to self-usages is essentially
an inter-procedural issue as well. Consider again the example of the addAll method
of a Java collection. Although this method’s implementation can use the add method
and not oblige by its contracts, the callers of addAll still need to oblige those rules.
Thus, such self-usages would be less problematic if the tool viewed the program under
analysis from an inter-procedural angle. This supports our motivation of re-integrating
inter-procedural analysis into the state-of-the-art of misuse detection.

To summarise, the previous works on static API misuse detection suffer heavily
from a number of shortcomings, leading to low precision and recall. We are primarily
interested in the lack of inter-procedural analysis, a prevalent root cause leading to
false positives, and which, if added, may also decrease the number of false negatives,
thus increasing a detector’s precision and recall. Thus, in the next section, we explore
existing techniques of inter-procedural analysis in pattern mining and misuse detection,
and identify potential strategies to incorporate such analyses into a state-of-the-art
misuse detector.
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2.4 Inter-Procedural Analyses in Misuse Detection

Since all of the detectors evaluated in the previous section suffer from false positives
and false negatives due to the absence of inter-procedural analysis, we need to identify
ways to integrate such inter-procedural analyses into the pattern mining and violation
detection phases. Since API usage can be spread across multiple methods, mining for
patterns inter-procedurally allows us to find more meaningful patterns, by getting a
better view of the API usages as a whole. However, patterns mined from such larger
views will lead to more false positives, since when detecting violations of the patterns,
partial pattern instantiations may reside in transitively called methods. Hence, both
pattern mining as well as violation detection need inter-procedural analysis. In this
section, we review the inter-procedural capabilities of existing pattern miners and
misuse detectors, and highlight a number of key inspirations to our work.

MAPO (Xie & Pei, 2006; Zhong et al., 2009) mines for patterns relating to third-
party methods inter-procedurally through the process of inlining call sequences of
callees into the sequence of their caller. The first version of MAPO (Xie & Pei, 2006)
recursively inlines first-party method calls up to a call depth of three. This may lead
to exceptionally large method call sequences, issues with call multiplicities, and may
bias the frequent subsequence mining, since the call sequence of a transitively called
method can be inlined multiple times if it is called multiple times, either directly or
indirectly. The second version of the miner (Zhong et al., 2009) alleviates these issues by
employing a more intelligent strategy. A call sequence found in a callee method’s body
is only inlined when the callee has not been inlined before in the same sequence. This
eliminates both direct and indirect recursion, as well as duplication when a method is
called multiple times. It also allows MAPO to perform deeper inlinings, unbounded
by call depth, until leaf nodes in the call graph are reached.

Empirical evaluation showed that the inlining technique employed in MAPO
is effective at finding API usage patterns scattered across multiple implementation
methods. However, it is unclear whether pattern mining using inlining is effective at
finding API misuses, since MAPO is a pattern miner and recommender, rather than a
misuse detector. Our work is heavily inspired by MAPO’s call sequence inlining: We
use their notion of inlining in a graph-based model, and two of our inlining strategies
are based on the end condition of their two inlining algorithms.

Recall that Chronicler (Ramanathan et al., 2007a) mines for inter-procedural
patterns by extending their precedence constraints with a function summary of the
callee at every call site. In a sense, precede constraint information of the callee is inlined
into the precedence constraint chain of the caller. Chronicler’s use of function
summaries as a memoisation technique forms the inspiration to our two-phase graph
construction, where we first create graphs for each individual method body intra-
procedurally, and then combine the graphs to form inter-procedural models. This
prevents us from having to re-parse and regenerate graphs for every callee, effectively
memoising the intra-procedural models.

JSM iner (H. V. Nguyen et al., 2014) embeds the bodies of callees into the graph of
their callers, which is very similar to our approach. However, JSM iner explicitly keeps
function boundaries in their representation, through an indirection of a function call to a
function declaration to the body of the function. We note that this does not allow pattern
implementations to be scattered arbitrarily across multiple methods. Thus, we instead
decide to erase method boundaries in our inter-procedural graph representation, as if
the inlined callee’s body was written directly in the caller. Additionally, JSM iner’s
JSModel representation is heavily based on groums, which have been shown to
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perform poorly in the previous section. Thus, we employ an alternative, richer graph
representation, which impacts our inlining algorithm and adds additional complexity
due to the increase in semantics.

As explained in Section 2.2.1, Colibri/ML (Lindig, 2016) applies inlining on
its input relation, allowing it to mine both first-party API and third-party API call
patterns. In our approach, when inlining, we specifically decide to remove method
boundaries, for reasons described above. This negatively impacts our ability to detect
first-party API usage patterns and thus, detect misuses of first-party APIs. Retaining
the ability to do this would instead require introducing method boundaries into our
representation, and would lead to less general patterns of third-party APIs, as the
representation dictates implementation details.

PR-M iner (Li & Zhou, 2005) employs an inter-procedural check to prune false
positives from its detection results. Since pattern instances and violations may cross
method boundaries, PR-M iner checks a function’s callees to determine whether a
partial pattern is completed by any of the callees. The tool also checks whether all
of the callers of a function complete a partial pattern, in which case the violation in
the function is a false positive. This approach partially inspires our inter-procedural
violation filtering algorithm. We do not explicitly check if a missing element is present in
a callee method, since such information is readily available in the inlined representation.
However, our filtering algorithm does check the callers of a method, to prevent false
positives if a pattern is extended to completion by all of the callers. Additionally,
because of the inter-procedural representation, it may happen that both a caller and
a callee contain the same violation, which would lead to duplicate results. We apply
heuristics to determine who is to blame for the violation, and use this information to
prevent reporting duplicate violations.

2.5 Conclusion

Due to the ever-growing number of popular, ever-changing APIs, employing prede-
termined rules to detect violations of API contracts has become infeasible. Therefore,
recent work in the field of API misuse detection statically infers these rules by mining
usage patterns from corpora of projects. They identify misuses of the API by detecting
usages that deviate from the mined patterns, under the assumption that a usage must
be correct if it occurs frequently enough, and that usages that are similar, but not
identical, to the mined usage patterns constitute a bug.

To mine such usage patterns, existing approaches often use either frequent itemset
mining, frequent subsequence mining, frequent subgraph mining, or a combination
thereof. In general, frequent itemset mining cannot natively capture an order relation,
whereas frequent subsequence mining captures total orders, and frequent subgraph
mining captures partial orders. These mining techniques are paired with varying
representations, depending on the phenomena a tool aims to capture. This combination
of representation and mining technique dictates which types of misuses a detector can
identify, and thus heavily impact a tool’s capabilities. We review a total of 23 existing
approaches to misuse detection, some of which are not specifically designed to detect
violations of API usages, but whose representation can potentially be used to do so.
We summarise these existing tools in Table 2.2.

Evaluation of the four state-of-the-art misuse detectors GrouM iner, DMMC,
Tikanga and JADET showed that precision and recall is quite low. Root causes for
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this phenomenon include uncommon but correct usages that are misclassified as a
misuse due to divergence from the mined patterns, poor representations, and lack
of inter-procedural analysis. We determine that a graph-based representation, such
as the groums used in GrouM iner, is most promising to detect misuses. Based
on the insights gained from the evaluation of these four detectors, and the groum
representation, Amann et al. (2019) construct the API usage graph representation,
which alleviates the issue of poor representation, but does not tackle the lack of
inter-procedural analysis.

We thus analyse previous research to identify potential strategies of incorporating
inter-procedural analysis into a graph-based representation. We find that an often
used approach is inlining the representation of transitively called functions into the
representation of the caller. A tool closely related to our work, JSM iner (H. V. Nguyen
et al., 2014), embeds the graph of callee functions into the graph of the caller. However,
their approach deliberately retains function boundaries, which limits the ability of
the miner to detect API usage patterns whose instances scatter their implementation
arbitrarily across different functions. Additionally, JSM iner focuses on pattern mining
rather than misuse detection, and thus does not implement inter-procedural violation
filtering, which is often found in inter-procedural misuse detectors. Such filters remove
false positives that are caused by missing pattern elements which are present inter-
procedurally in the function body of any callee, or all callers.

Thus, we conclude that to achieve our research goal, we should extend graph-based
misuse detection with inter-procedural analysis. We identify that a viable approach is to
inline the graph of a callee into the graph of its callers in a method boundary-agnostic
manner, and to design an inter-procedural violation filter. The former allows us to
achieve our goal of mining patterns in the presence of helper methods, whereas the
latter allows us to remove false positives that appear because of missing program
elements when viewing a single method in isolation. In terms of which graph repres-
entation to incorporate this approach into, we look in the direction of MUDetect, the
current state-of-the-art misuse detector, whose representation is specifically designed
to distinguish correct usages from misuses. This tool is the subject of our next chapter,
where we continue this literature review.
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3 | API Usage Graph Mining

The MUBench and MuC studies described in the previous chapter provide important
insights into the shortcomings of previous detectors. Using these insights, the state-of-
the-art tool MUDetect (Amann et al., 2019) builds upon GrouM iner (T. T. Nguyen
et al., 2009), extending its graph-based object usage model (groum) representation,
graph mining and detection algorithms, to improve upon its performance.

In this chapter, we take a closer look at MUDetect’s graph representation and
algorithms. In Section 3.1, we explore the API usage graph representation, its structure,
node types, and edge types. Afterwards, we delve into the construction process of
AUGs in Section 3.2. Then, in Section 3.3, we describe the tool’s mining and detection
algorithm. We further review the evaluation of the detector in Section 3.4, which shows
that MUDetect outperforms four other state-of-the-art misuse detectors, but also
identifies a number of important shortcomings, including a lack of inter-procedural
analysis. Thus, we select MUDetect as a base implementation to incorporate graph
inlining into. Finally, we conclude this chapter in Section 3.5.

3.1 Structure of an AUG

We start off by introducing the API usage graph (AUG) structure. Figure 3.1 shows
an example Java source code snippet, along with the AUG corresponding to the code.
We use this example to describe the API usage graph representation. As displayed in
the figure, an API usage graph is a labelled, directed, acyclic multi-graph, where both
nodes and edges are labelled. Since an AUG is a multi-graph, there may be multiple
edges with different labels connecting the same two nodes. We can see this in the top
of the graph, where there exist two edges connecting the node labelled <nullcheck> to
the node labelled FileInputStream.<init>.

There exist many different node and edge types. Nodes represent program actions,
such as method calls, variable assignments, or constructor invocations, and program
data, such as variables and constants. Action nodes are represented as gray boxes in
the figure, whereas data nodes are depicted as blue ellipses. Action nodes are labelled
according to the action they represent, e.g. for a method call, the label is the name of
the target method, as is depicted in the handle() and InputStream.read() nodes in
the figure. Data nodes are labelled according to the type of data they represent, such as
String and FileInputStream in the example.

Edges represent different types of control flow or data flow, depicted using dashed
and solid edges in the figure, respectively. Edges are labelled according to their concrete
type, e.g. “param” for a parameter data flow edge that connects a data node to its use
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Chapter 3. API Usage Graph Mining

site, or “order” for a temporal control flow order edge between two action nodes. Such
edges can readily be seen in the figure. Note that order edges can be transitive, but
these are omitted from the graph for readability purposes.

if (file != null) {
try {

FileInputStream fis = new FileInputStream(file);
return fis.read();

} catch (FileNotFoundException e) {
handle(e);

}
}

(a) An example Java code snippet containing branches and exception handling.

String

<nullcheck>

FileInputStream.<init>

FileInputStream FileNotFoundException

InputStream.read()

int

<catch>

handle()

<return>

param

param

selorder

ord
er

or
de
r

def

recv

def

param

throw

param

handle

param

or
de
r

order

order

order

Action node

Data node

Control flow

Data flow

Legend

(b) Example AUG corresponding to the example code snippet.

Figure 3.1 – An example Java code snippet and its corresponding AUG, adapted from the
example given by Amann et al. (2019). Action nodes are shown as gray squares, data nodes
as blue ellipses. Data flow edges are shown as solid edges, while control flow edges are
dashed edges. Note that transitive order edges are omitted for readability purposes.

There exist eighteen types of action nodes that can be present in an AUG, all relating
to possible program statements or expressions and control structures. Because of the
sheer number of possible action nodes, we do not go into great detail for all of them.
An interesting action node type is the operator node, which represents binary operators
present in the method body. The actual operator is abstracted by MUDetect, such
that the tool focuses on the presence or absence of such operators, rather than the actual
expression used, since conditions may be specified in many different ways. In general,
an arithmetic operator is given the label “<a>”, a relational operator is given the label
“<r>”, and logical operators are removed. An exception to this is a comparison to the
null literal, which is represented using the “<nullcheck>” label, which can be seen in
the figure.

Another important feature is that the AUG representation abstracts over the receiver
type of a call. As can be seen in the figure, the action node corresponding to the call
to the read method on the input stream is labelled as InputStream.read(), even
though we statically know that the receiver object is a FileInputStream. However, the
receiver type is abstracted to generalise the representation in the presence of method
overloading in type hierarchies.

Action nodes only represent actions, the data which is involved in the actions is
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3.2. Constructing AUGs

represented separately as data nodes. Six types of such data nodes exist, represent-
ing for instance variables, literals, or constants. A special case of data nodes is the
anonymous instance method node, which is used when a method body constructs
an instance of an anonymous class to use as a function object. The methods defined
in this instance are represented individually, so that pattern mining can also capture
patterns in such function objects. In a way, this is similar to the approach taken by
JSM iner (H. V. Nguyen et al., 2014).

To connect all of these nodes, five types of control flow, and six types of data flow
edges exist. Note that since an AUG is a multi-graph, multiple edges of different types
may exist between the same two nodes. Control flow edges always involve at least one
action node, whereas data flow edges always involve at least one data node.

The five type of control flow edges are as follows: (a) Order edges, representing
temporal call order between nodes, (b) selection edges and (c) repetition edges, which
both connect an action node representing a condition to action nodes in branches
controlled by the condition, (d) synchronisation edges, which connect a data node to
the actions executed under a lock held on the data, and (e) finalisation edges, which
connect action nodes that may throw an exception in a try-catch-finally construct to
the action nodes executed as finalisation code of this construct.

Since the temporal call order relation is transitive, order edges can also be transitive,
representing the transitive closure over this relation. Backward edges in call order,
which occur in loops, are excluded from the representation to keep AUGs acyclic.
Additionally, a data-dependent closure of condition edges is generated: Using data
flow information, additional condition edges are instantiated which link action nodes
affecting data involved in the condition, to the action nodes of the condition as well as
action nodes controlled by the condition. If the condition is involved in an if-then-else
construct, the edges are selection edges; if it is involved in a loop condition, the edges
are repetition edges.

In terms of data flow edges, there exist definition edges, which link an action node
that creates a data value to the data node that is created, as well as two use edges
that connect a data node to their use site, namely receiver edges and parameter edges.
Throw edges connect an action node that may throw an exception to the exception
data node that may be thrown. Exception handling edges connect a catch action node
to the action nodes that handle the caught exception. Although exception handling
nodes convey control flow information, they are considered data flow edges, since type
information of the exception flows into the handling code. A final data flow edge type
is the qualifier edge, which connects type annotations such as @NonNull to the data
node on which the qualifier is applied.

One final edge, which is neither a control flow edge, nor a data flow edge, is the
containment edge. Such edges are used to connect an anonymous class instance to the
method data nodes defined in the instance, as well as to connect such method data
nodes to the action nodes contained within the method body.

3.2 Constructing AUGs

Since AUGs are groums with a richer representation, it comes as no surprise that at
a high level, the construction of an AUG is similar to the construction of a groum.
AUGs are constructed in three steps. First, source code of the target project is parsed to
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1function Create−AUG( as tNode )
2returns "a p a r t i a l AUG fo r the g iven AST node"
3switch Type−Of ( as tNode ) do :
4case I fStatement ⇒ Create−If−Statement−AUG( as tNode )
5# . . .
6

7function Create−If−Statement−AUG( i f S t m t )
8conditionAUG ← Create−AUG(Condition−Node( i f S t m t ) )
9trueAUG ← Create−AUG(True−Branch( i f S t m t ) )
10falseAUG ← Create−AUG(False−Branch ( i f S t m t ) )
11

12branchesAUG ← Parallel−Merge ( trueAUG , falseAUG )
13return Sequential−Merge ( conditionAUG , branchesAUG , Select ionEdge )
14

15function Parallel−Merge ( leftAUG , rightAUG )
16mergedNodes ← Nodes ( leftAUG ) ∪ Nodes ( rightAUG )
17mergedEdges ← Edges ( leftAUG ) ∪ Edges ( rightAUG )
18return new AUG( mergedNodes , mergedEdges )
19

20function Sequential−Merge ( leftAUG , rightAUG , edgeType )
21mergedNodes ← Nodes ( leftAUG ) ∪ Nodes ( rightAUG )
22mergedEdges ← Edges ( leftAUG ) ∪ Edges ( rightAUG )
23newEdges ← { }
24for s inkNode ∈ Sink−Nodes ( leftAUG ) do :
25for sourceNode ∈ Source−Nodes( rightAUG ) do :
26newEdges ← newEdges ∪ {new Edge ( s inkNode , sourceNode , edgeType ) }
27

28return new AUG( mergedNodes , mergedEdges ∪ newEdges )

Listing 3.1 – Pseudo-code describing the AUG construction phase.

an abstract syntax tree (AST) using the Eclipse Java Development Tools. Secondly, a
temporary AUG is created from the AST. This temporary AUG captures action and
data nodes together with partial usage orders, but is missing the transitive usage order
and the data-dependent closure of condition edges. Hence, the final step is to compute
these closures and instantiate them in the graph.

The second step, extracting temporary AUGs, is a bottom-up construction process
of the graph through post-order depth-first traversal of the AST, following much of the
construction process of groums (T. T. Nguyen et al., 2009). We describe this construction
process in the pseudo-code shown in Listing 3.1. At each interesting AST node, a partial
AUG is created that corresponds to the AST node. For non-leaf AST nodes, such as
operators or composite control structures, the AUG is obtained by merging the partial
AUGs of its descendants and a partial AUG created for the node itself. For example,
the function Create -If -Statement-AUG in the pseudo-code shows this process
for if-then-else statements. We create two partial AUGs for the branches and a partial
AUG for the condition. We first merge the branches without connecting any of their
nodes, since branches are isolated. Then, we merge the result with the partial AUG
created for the condition, and connect the condition AUG to the branches via selection
edges.

In GrouM iner, two merge operations are defined: Parallel merge (∨) and sequen-
tial merge (⇒). Parallel merge of two partial graphs A and B leads to a new graph
A∨B that contains all nodes and edges of A and B, but no edge between any node of
A and any node of B. This is also called the disjoint union of graphs, and is shown in
the Parallel -Merge function in the pseudo-code. Sequential merge of two partial
graphs A and B leads to a new graph A ⇒ B, also containing all nodes and edges
of both A and B, but containing additional edges connecting every sink node of A
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to every source node of B. This is shown in the Sequential -Merge function. In
general, sequential merge is used when the latter graph has a dependency on the
former, such as a temporal order dependency, while parallel merge is used when there
are no dependencies.

For example, consider a method call o.m(e1, e2), where e1 and e2 are program
expressions, o is an instance of class C, and m is a method taking two formal parameters
defined in class C. Construction of an AUG will first lead to two independent partial
AUGs E1 and E2 for the respective expressions used as call arguments. A third AUG
M is created for the method call, which contains a single node corresponding to the
method call C.m(). Note that the node is labelled with receiver’s static type instead of
the actual instance, as a generalisation. To obtain the composite AUG for the method
call, we first merge the partial AUGs for its arguments: E1 ∨ E2. In this case, a parallel
merge is used, since arguments are evaluated independently from one another. Since
the call itself depends on the arguments, we perform a sequential merge connecting
them to the partial AUG representing the method call, leading to the composite AUG
(E1 ∨ E2)⇒M.

Recall that AUGs capture condition edges separately. To do this, the sequential
merge operation defined in GrouM iner is extended to instantiate such edges, de-
pending on the actual control flow construct encountered. For an if-then-else statement,
the sequential merge operation now adds additional selection edges going from the
action nodes representing the condition to action nodes in a branch of the statement
which share a data dependency with the condition.

Since AUGs also contain data nodes and data flow edges to represent the data
dependencies, such edges need to be instantiated when constructing the graph. Thus,
AUG construction adds data nodes for each data entity encountered in the program,
initially represented as its own partial AUG. These data AUGs are then merged with
other partial AUGs that depend on this data using the sequential-data merge operation.
This operation is very similar to the previously-defined sequential merge operation,
with the main difference being that it distinguishes between data use (parameter edges,
receiver edges) and data definition (definition edges). In essence, when the left-hand
side AUG’s sink node is a data node, it adds a data use edge, and if the right-hand
side AUG’s source node is a data node, it adds a data definition edge.

3.3 Pattern Mining and Violation Detection in AUGs

As previously mentioned in Section 2.1.3, mining for patterns in a collection of graphs is
performed using a-priori frequent subgraph mining. Although MUDetect’s mining
algorithm is mostly similar to the previously described a-priori algorithm, the authors
tweak this algorithm to produce more meaningful patterns, by exploring the AUGs
in a code semantics-aware fashion. Concretely, when extending candidate patterns,
it distinguishes between node and edge types to guide the exploration, and only
considers nodes as extension candidates if it is connected to the existing pattern by a
non-order edge. Further filtering of candidate extensions is performed to only include
nodes that affect a usage. For example, pure methods are ignored if their return value
is not used, since they cannot otherwise influence the usage.

After candidate extensions are generated, they are clustered into bins of isomorphic
extensions. This isomorphism check uses Exas feature vectors, described earlier, and
hence this clusters extensions with identical feature vectors into the same bin. Any
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inextensible patterns, i.e. candidate patterns that have no extensions but are sufficiently
frequent, are added to the set of discovered patterns. For patterns that are extensible,
the most frequent candidate extension is selected for further exploration. This leads to
a greedy extension strategy that avoids the combinatorial explosion that would take
place in an exhaustive search with backtracking.

Similarly to GrouM iner, MUDetect defines a violation as an infrequent strict
subgraph of a previously mined pattern. To find such violations, MUDetect performs
graph matching to compute overlaps between a target method AUG and a pattern. The
graph matching follows the pattern growth approach in frequent subgraph mining,
paired with a greedy exploration strategy. However, it does not feature an a-priori
pruning phase, as there is no minimum support defined. When an overlap between a
pattern and a target is imperfect, i.e. there exists a partial instance of the pattern graph
in the target graph, this overlap is reported as a likely violation.

Concretely, the matching algorithm starts by detecting a method call node that is
shared among the pattern and the target, which is a common subgraph consisting of
one node. Then, it extends this common subgraph with more common nodes. Extending
the subgraph is done by selecting the best pattern edge that is also present in the target,
and adding this edge and the unexplored common node to the subgraph. Additionally,
any other edge that connects this new node to other nodes that are already present
in the overlap, are added to the subgraph as well. There may be multiple equivalent
edges when extending patterns, which lead to more alternative mappings between
pattern and target nodes, and therefore the possibility of selecting a mapping which is
non-optimal. To decrease the likelihood of selecting such a non-optimal mapping, the
algorithm selects edges with the lowest number of equivalents as the next extension
edge.

When a common subgraph cannot be further extended, the subgraph is considered
the final overlap between the pattern and target. If this overlap is not isomorphic to
the pattern, it is a violation, otherwise, it signifies an instance of the pattern in the
target. Afterwards, the algorithm checks if there are more method call nodes that are
shared among the pattern and target and not included in any overlap yet, and restarts
its exploration from such a node if one is found. This finds all alternative mappings of
pattern nodes and edges to the target graph by attempting to maximise the coverage of
target nodes.

After violations are detected, they are filtered according to a number of heuristics,
as well as filtering out violations of one pattern if the violation is an instance of an
alternative pattern. If a violation violates all alternative patterns, it would also be
duplicated for each alternative pattern that is violated. In order to decrease the number
of duplicates, violations that are subgraphs of other violations are filtered out as well.

Finally, the findings are ranked according to the tool’s confidence of the finding
being a violation. This confidence can be calculated in many different ways, and the
authors find that a ranking function which involves both the pattern support, the
number of equivalent violations, and a distance measure between the pattern and the
violation, to be the optimal ranking strategy to push true positives to the top of the
findings.
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Detector Precision RUB Recall

DMMC 7.5% 16.3% 10.7%

JADET 8.8% 16.9% 6.7%

Tikanga 8.2% 8.8% 7.6%

GrouM iner 2.6% 51.2% 3.1%

MUDetect 21.9% 72.5% 20.9%

MUDetectXP 33.0% - 42.2%

Table 3.1 – The precision, recall, and recall upper bound of GrouM iner, DMMC,
Tikanga, JADET, MUDetect, and MUDetectXP on the extended MUBench
dataset, as obtained by Amann et al. (2019).

3.4 MUDetect Evaluation

The authors evaluate MUDetect on the MUBench dataset, and further extend
this dataset with more misuses identified from a different study. They additionally
evaluate the four detectors considered in Amann et al. (2017) on this extended dataset
as a comparison. We display their obtained results in Table 3.1. This experimental
evaluation shows that MUDetect successfully alleviates many of the problems
described by Amann et al. (2017), and achieves higher precision and recall than the
four state-of-the-art detectors compared to. However, precision and recall is still fairly
low, 21.9% and 20.9% respectively. In a cross-project setting (MUDetectXP), where
patterns for a specific API are mined from multiple projects and violations are later
detected in a single target project, precision rises to 33%, while recall rises to 42.2%,
improving upon other detectors’ results more than fourfold. This shows that the
AUG representation is successful at capturing more information necessary to detect
violations, and that mining patterns from different projects tremendously increases the
effectiveness of finding misuses. The full results of this experiment are available on
MUDetect’s artefact page (Amann, 2019).

Even though MUDetect leads to better results than other detectors, its statistics
are still low. The authors investigated the false positives and false negatives, and
thereby identified the main reasons for low precision and low recall. They find that
many of the false positives (73.7%) are due to uncommon, but correct usages. Such
usages occur too infrequently in the project to mine a respective alternative pattern,
and the usage is flagged as a misuse as it violates another, more frequent pattern.
Mining in a cross-project setting prevents many such situations from happening, but
not all of them.

Lack of inter-procedural analysis directly leads to 15.8% of the false positives,
where for example missing usage elements are reported, but are present in transitively
called methods. Since MUDetect makes no attempt at inter-procedural analysis,
it cannot eliminate such false positives, and thus, an inter-procedural violation filter
would be beneficial. Other minor reasons for false positives include implicit object
dependencies, which are very difficult to detect statically, the detection algorithm
choosing a non-optimal mapping in its exploration, and edge cases that were missed
by various filters.

The root causes of false negatives, where MUDetect fails to detect actual misuses,
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are more divided. Most of the false negatives are due to AUG representation issues:
Fifteen of the missed misuses involve illegal literal or constant values given as a
parameter to a call. Since AUGs do not capture concrete values, such misuses cannot be
detected. When constructing AUGs, self-usages, i.e. method calls on this or instance
fields, are removed due to the potential of causing false positives because of partial
usages. Eight misuses are missed because of this removal, a trade-off of recall for
higher precision. The authors note that inter-procedural analysis may make removal of
self-usages unnecessary, because it can then capture the full usage.

Another root cause of misuses are superfluous method calls rather than missing
method calls, for example, a duplicated call to next on an iterator. None of the detectors
evaluated can detect such misuses, since they search for missing elements. Matching
issues also lead to some false negatives, where the pattern and target contain a single,
distinct method call. Such AUGs cannot be matched by design, since they do not share a
common method call. Heuristic removal of pure methods in the pattern leads to another
six cases of false negatives, where a pattern cannot be matched to a target. Three more
infrequent issues cause one false negative each: Heuristically removing subsequent
calls to the same method leads to a pattern and target being identical, missed data flow
relations because of the assumption of single static assignment causing a null-check to
be missing from the pattern, and operator abstraction leading to the tool being unable
to detect an inverted condition.

Despite these shortcomings, MUDetect achieves relatively high precision and
recall when compared to the other state-of-the-art detectors. Therefore, we consider
MUDetect to be a prime candidate for integration of inter-procedural analysis, since
the evaluation shows that a common cause of false positives and false negatives can be
related to the intra-procedural analysis employed.

3.5 Conclusion

The API usage graph representation used in MUDetect captures a lot of important
details in method bodies that help it distinguish correct API usages from API misuses.
Its nodes capture many different types of program actions, and additionally capture the
data involved in these actions. To link all the nodes, an AUG contains many different
types of control flow and data flow edges. In the end, the representation captures
nearly all possible parts of a single method body.

Constructing such AUGs involves a depth-first post-order traversal of a method
body’s abstract syntax tree. For each node of the AST, construction creates a partial
AUG, which is later merged in one of two ways with the partial AUGs of the AST
node’s ancestor and siblings. Two merge operators are defined: Parallel merge and
sequential merge. Parallel merge computes the disjoint union of two graphs, i.e. a
graph containing all nodes and edges of both partial graphs, but no edges connecting
them. This is used to combine e.g. the partial AUGs for two different branches of a
conditional statement. Sequential merge, on the other hand, also merges the two graphs
into one larger graph, but connects the sink nodes of the first graph to the source nodes
of the second. This merge operation is used to connect two partial AUGs representing
program statements that are executed sequentially.

To detect misuses, MUDetect first mines its AUGs using a-priori frequent sub-
graph mining, which has been tweaked to consider code semantics and thereby generate
more meaningful patterns. The patterns are then used to detect misuses, by computing
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overlaps between a pattern and a target AUG. This detection algorithm follows much
of the same structure as pattern-growth frequent subgraph mining, and continually
extends a common subgraph to detect maximal overlaps between the two graphs. This
leads to instances of the pattern if the overlap spans the full pattern, or violations if the
overlap is a strict subgraph of the pattern. Violations are filtered according to heuristics
and instances of alternative patterns are eliminated to reduce false positives, and the
resulting misuses are ranked according to the tool’s confidence in its findings.

The detailed representation of method bodies, the code semantics-aware extension
strategy during mining, and the separate phase of overlap detection pays off: MU-
Detect significantly outperforms four other state-of-the-art detectors. When the tool
mines patterns from multiple independent projects, these results are further improved,
since it can find more proof of correct usages and alternative usages. However, the
detector still regularly suffers from false positives and false negatives, in part caused
by a lack of inter-procedural analysis.

Extending the AUG representation to represent multiple method bodies inter-
procedurally, rather than a single method body in isolation, as well as introducing an
inter-procedural filtering algorithm to MUDetect, could improve upon their already
good results. Thus, we select MUDetect as the base implementation to extend with
inter-procedural analysis, because of its detailed AUG representation and its relatively
high precision and recall.
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4 | Inter-Procedural Analysis by
Inlining Graphs

As detailed in the previous chapters, we choose to extend MUDetect to incorporate
inter-procedural analysis, thereby allowing the tool to eliminate inter-procedural false
positives and detect violations in the presence of self-usages. To do this, we integrate
graph inlining and inter-procedural filtering into the tool’s workflow. For the former,
we extend the AUG representation to extended API usage graphs (eAUG) and inlined
API usage graphs (iAUG). For the latter, we extend MUDetect’s filtering phase to
additionally perform inter-procedural elimination. A full overview of the phases this
extended tool goes through to inter-procedurally mine patterns and detect violations is
displayed in Figure 4.1.

At a very high level, our tool performs the same four tasks as MUDetect, but in
terms of iAUGs rather than AUGs. First, we construct iAUGs from source code. We
then mine the iAUGs for patterns, and afterwards use the patterns to detect potential
misuses in the iAUGs. Finally, we filter and rank the results. At a lower level, however,
there are some key differences, which we describe below.

The construction phase can be decomposed into three smaller phases. Initially, we
parse the source code of one or more Java projects into ASTs. From these ASTs, we

Java
project ASTs eAUGs iAUGs

Patterns

Overlaps

Pattern
violations

Likely
misuses

Ranked
misuses

1. Parsing 2. eAUG construction 3. Inlining

4. Pattern mining

5. Overlap detection

6. Inter-procedural filtering 7. General filtering 8. Ranking

Construct

M ine

Detect

F ilter & Rank

Figure 4.1 – A high-level overview of the phases our tool goes through to inter-procedurally
mine and detect API misuses in a Java project. The different phases are shown as numbered
edges. Blue ellipses display the data each phase produces. Aggregate phases are displayed
in orange, bounded by gray boxes.
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generate eAUGs as an intermediate representation for each method body. The structure
of such an eAUG is similar to that of the AUG of MUDetect, but extended with
extra information to facilitate the inlining process. We describe these differences in
Section 4.1. After eAUGs have been constructed, we apply our inlining algorithm on the
eAUGs, the result of which is a collection of iAUGs, one for each eAUG. The inlining
process is guided by one of six possible inlining strategies, dictating which calls are to
be inlined, and in what order. We go more in depth on the general inlining algorithm,
the different strategies, and the workflow of inlining a method call in Section 4.2.

Since iAUGs are extended and larger versions of normal AUGs, the mining and
detection phases remain largely identical to MUDetect’s. The main difference in
these phases is that we implement a number of performance and memory optimisations
which are necessary to make mining and detection feasible. Since these two phases
suffer from combinatorial explosion, and graphs are expected to become bigger after
inlining, we optimise some of the data structures that are used in these phases to
decrease the memory footprint of these algorithms. However, we do not go into detail
on these changes, since they mostly consist of changing mutable data structures to
immutable ones to promote structural sharing.

Note that in the filtering and ranking phase, we distinguish pattern violations from
misuses. Indeed, not every pattern violation is an actual misuse, it may instead be an
alternative usage, or a part of a larger, inter-procedural instance of the pattern. Thus,
the filtering and ranking phase removes known false positives and ranks the resulting
likely misuses, so that violations that are most likely to be a misuse are ranked higher.

First, we apply heuristic filtering to remove false positives and duplicate results that
are the result of the inter-procedural analysis. In a nutshell, we remove false positives
that are the result of an iAUG containing a partial pattern which is further instantiated
by its parent, and remove duplicate violations that may arise if an inlined callee violates
a pattern. We go into more detail on this filtering in Section 4.3.

After inter-procedural filtering, the tool applies general filtering on the results to
remove common false positives. For example, if a pattern dictates that the result of a
call is to be stored into a variable for later use, whereas the instance does not store
the temporary variable and instead chains the call, it would be incorrectly marked as
a violation even though the pattern and instance are behaviourally equivalent. Thus,
such potential violations are filtered out. This phase additionally filters out pattern
violations that are an instance of another pattern, indicating that the violation is instead
a valid alternative usage.

Finally, the findings are ranked according to the tool’s confidence in it being an
actual misuse. This confidence value is obtained from a combination of the pattern
support, the number of equivalent violations found, and the distance between the
pattern and the violation (the number of missing nodes and edges). Intuitively, if a
pattern has a high support, deviations from it are more likely to be a misuse, whereas
if a violation has a high number of equivalents, it is more likely to be an alternative
usage than an actual misuse. Furthermore, if the violation deviates only slightly from
the pattern, i.e. the distance between them is low, the violation is more likely to be an
actual misuse than if it deviates significantly, in which case it may be unrelated to the
pattern.
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class C {
char c = 't';
boolean m(int i, String s) {

String result = this.c == s.charAt(i);
return result;

}
}

(a) Contrived Java code example that highlights some of the
key differences between AUGs and eAUGs.

int String

String.charAt(int)

charchar

<r>

boolean

<return>

param recv

def

paramparam

def

param

order

order

order

(b) The AUG corresponding to the example
method code.

int java.lang.String

java.lang.String.charAt(int)

charchar

<r>

boolean

<return>

param 0 recv

def

param 1param 0

def

param

order

order

order (trans.)

C.m( int , java.lang.String )

this.c

(c) The eAUG corresponding to the example
method code.

Figure 4.2 – A graphical overview of the key differences between AUGs and extended
AUGs.

4.1 Extended AUG Representation

Inlining method bodies in the AUG representation requires program information which
is not readily available in the original representation, such as parameter order, instance
field mappings, and exceptions that may be thrown by a called method. To facilitate the
inlining, instead of constructing normal AUGs, our tool constructs eAUGs, which are
AUGs that contain all of the program information necessary to correctly inline method
bodies. The structure of such eAUGs is similar to that of an original AUG, yet contains
some key differences, which we illustrate in this section using a contrived Java code
example shown in Figure 4.2a. Figure 4.2b shows the original AUG representation for
this code, whereas Figure 4.2c shows the corresponding eAUG. We additionally explain
the reasoning behind the implemented changes to the representation, and describe
how the changes help alleviate some of the challenges in inlining method bodies.

The first difference is readily apparent from the comparison: Type names and
method names in eAUGs are fully-qualified, as opposed to the simple names used
in the original AUG representation. This is because different Java packages may
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contain classes of the same name, and using fully-qualified names eases the distinction
between such homonyms. Furthermore, using fully-qualified names allows us to easily
determine whether a class or method belongs to a third-party API package.

A second difference can be seen in the parameter edges. In the original AUG
representation, when a method call takes multiple parameters, all these parameters
are independently connected to the call node via parameter edges. eAUGs instead
encode the argument order into the labels of parameter edges to relate data values
to their position in the call. In the example eAUG, we can see which data node is
used in which position in the operator expression, i.e. the node labelled by “<r>”, as
well as the parameter position of the int parameter to the charAt call. Encoding the
parameter order is necessary to properly link the caller’s data nodes that are used as
call arguments to the data nodes that represent the arguments in the callee.

However, properly linking these data nodes requires more than just encoding
parameter order, since we need to know which data nodes to link to in the callee.
Therefore, an eAUG keeps track of a mapping from formal parameters to their data
nodes, which constitutes the third difference. This can again be seen in the example,
where we annotated this mapping through callout boxes in the method’s signature.
Note that this information is internal to the eAUG, it is not considered during the
mining of patterns to keep the mining method boundary-agnostic. We only display
this information in the examples for illustrative purposes.

In a similar fashion, as a fourth difference, an eAUG keeps a mapping of the
instance field names used in the method, to the data nodes representing these instance
fields. This information is used during inlining to ensure that when a callee is inlined,
and the callee is a method called on the same receiver as the caller, the fields used in
the caller are shared with the fields used in the callee. This can be seen in the example,
where a data node has been annotated with “this.c”, indicating that this data node
represents the c field. As with formal parameter mappings, this information is kept
internal to an eAUG, and is not considered during mining for generality.

An additional, minor difference that can be spotted in the example is that eAUGs
distinguish direct order edges from indirect ones, by explicitly marking transitive order
edges as such. This makes it significantly easier to traverse the eAUG according to the
execution order of its nodes, which is necessary to obtain a semi-consistent inlining
order.1

A final difference, which is not shown in the example, is that an eAUG may contain
edges which are never present in an original AUG. One such edge is an exception
finalisation edge directly connecting an action node representing the throwing of an
exception to nodes that represent the finalisation code. Such edges are absent in original
AUGs because of the assumption that a method does not catch its own exceptions.
However, this may happen, such as to escape control from a highly nested loop.2 As
we will see later, the ability to store such edges is especially necessary in iAUGs, where
a callee may throw an exception which is caught by its caller. When the callee is inlined
into the caller, the caller’s iAUG will contain both the throwing node as well as the
catching node.

Our second representation, the iAUG, is an extension of the eAUG. The main
difference between the two is that an iAUG can be a lot larger than its corresponding

1As we will see later, the inlining order is semi-consistent, rather than fully consistent, since the order
in which two different branches are explored individually is undefined. However, our inlining algorithm
guarantees that calls are inlined in a way that is consistent with the partial call order.

2Although this may be considered a code smell by some, it is valid code nonetheless.
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eAUG, since the method’s callee eAUGs have been inlined into it. iAUGs additionally
keep track of the methods that have been inlined into it (its direct or indirect callees),
as well as the methods it has been inlined into itself (its direct or indirect callers). This
information is used during inter-procedural filtering, so that we do not have to inspect
call graphs to discover caller-callee relations.

4.2 Graph Inlining

Our tool is able to mine for method boundary-agnostic inter-procedural patterns and
detect violations of these patterns by creating a composition of a project method and
all of its first-party callees. It creates such compositions by embedding the graphs
that represent the callees’ bodies into the top-level method, a process called inlining.
Essentially, our iAUGs provide a broader view of the target code base, as if the API
usage that is scattered across multiple methods, was in fact all placed in a single
method body.

f

g h

a b

Figure 4.3 – An example call
graph.

There are many different ways in which an API usage
can be scattered across functions.3 Consider the example
call graph in Figure 4.3, and assume we are focusing on
the function g, marked in gray shading. The function g has
two callees (a and b), one caller (f), and one sibling (h, a
callee of its caller). Assume further that g contains a partial
API usage that we are interested in, and the remainder of
this usage is present in its surrounding call context.

If the rest of the API usage is implemented by one of
g’s callees, then inlining a and b into g will provide us a
full view of the API usage in the iAUG of g. Similarly, if
the rest of the API usage is implemented in g’s caller, then

inlining g into f gives us a full view of the usage in the iAUG of f. Finally, if h contains
the remainder of the implementation of the usage, then the iAUG of f will also uncover
this inter-procedural usage. This last situation is especially interesting, as g and h are
not directly related. However, inlining allows us to uncover such hidden relations.

Continuing with the same example, assume that both g’s caller and callees contain
API usages that are part of the larger, inter-procedural usage, i.e. the API usage spans
a larger path through the call graph. The simple inlining described in the previous
paragraph is insufficient to uncover such larger usages. However, inlining can be done
recursively: First, we inline g (and h) into f, then, we inline g’s callees into the partially
inlined iAUG of f. The resulting iAUG then embeds the usages of all of the functions
shown in the example. We say that this iAUG is the result of inlining up to a depth of
2, since two levels of the call graph rooted at f have been inlined into it.

In theory, we can perform inlining up to arbitrary depths. For example, if we start
our inlining process at the main method of a Java program, and choose the depth to be
large enough, the resulting iAUG can capture the whole program. In practice however,
the feasible inlining depth is limited, since the number of inlined methods increases
exponentially as the inlining depth increases. Indeed, if we assume every program
method calls at most m other methods, and we inline up to a depth of d, the resulting
number of inlinings performed is in O

(
md

)
. Since each of the inlinings copies all of

3Even though we specifically focus on methods and object-oriented programs, a generalisation can be
made to functions as well.
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the nodes of the callee eAUG into the iAUG, the final iAUG will be enormous for
large values of d. Assuming every method eAUG contains at most n nodes, then every
inlining may grow the resulting iAUG with n nodes, and the final iAUG will have a
node count in O

(
(nm)d

)
. Because of transitive order edges, AUGs, and by extension

eAUGs and iAUGs, tend to be dense graphs. In essence, for larger inlining depths,
iAUGs tend to be very large, densely connected graphs. Since frequent subgraph
mining suffers from combinatorial explosion as it is, and is provided with an iAUG
for every method in the code base, even moderate inlining depths can be practically
infeasible. We go more in depth on this problem in our performance evaluation, in
Section 5.4.

Thus, the choice of inlining depth is vital to ensure feasibility of the analysis.
However, one can think of many other questions related to inlining. For example, if
our inlining algorithm encounters a recursive call, we can either choose to inline it
again, or skip this call. Different answers to such questions lead to different iAUGs
and may, as a result, lead to different patterns. Additionally, these questions can have a
significant impact on the size of the graphs. For instance, every method call we choose
not to inline eliminates the presence of this method’s nodes in the final iAUG, as well
as all of the method’s callees. We identify three main questions:

– Should recursive calls be inlined?

– Should duplicate calls be inlined?

– Should methods lacking target API usage be inlined?

Since we do not know which answers lead to the better patterns, we implement six
inlining strategies that differ in their handling of the cases described in these questions,
which we later experimentally evaluate.

The remainder of this section is dedicated to describing our inlining algorithm in
detail. We first introduce our general depth-first inlining algorithm, which takes as
input an eAUG of a method, and returns the corresponding iAUG. This is covered in
Section 4.2.1. Then, in Section 4.2.2, we describe the six inlining strategies that dictate
which method calls should be inlined, as introduced above. Finally, we describe in
detail the process of inlining an individual callee into the iAUG in Section 4.2.3.

4.2.1 Main Inlining Algorithm

Our main inlining algorithm can best be described as a pre-order depth-first traversal
through an implicitly-generated call tree of a method. Note that we use the term call
tree, rather than call graph, so that we can define the inlining depth as the depth of
the call tree in the presence of recursion. When a method recursively calls itself, either
directly or indirectly, a call tree can be of infinite depth. However, the inlining algorithm
is always limited by the user-provided maximum inlining depth, so a potentially infinite
call tree is only explored up to this depth.

Listing 4.1 shows a pseudo-code description of our main inlining algorithm. It first
creates a copy of the given eAUG, which becomes the iAUG under construction (line 3).
It additionally initialises the set of method eAUGs that have been inlined with the top-
level method’s eAUG (line 4), indicating that the top-level method’s eAUG is already
contained in the iAUG. Then, it starts the depth-first inlining process by calling the
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1function Inline (eAUG , maxDepth )
2returns "an iAUG correspond ing to eAUG, i n l i n e d up to maxDepth"
3global iAUG ← Create−iAUG(eAUG)
4global inl inedAUGs ← {eAUG}
5Inline−Depth−First ( maxDepth , [eAUG ] , eAUG)
6

7function Inline−Depth−First ( maxDepth , c a l l S t a c k , targetAUG )
8c a l l N o d e s ← Discover−Call−Nodes ( targetAUG )
9

10for c a l l N o d e ∈ c a l l N o d e s do :
11cal leeAUG ← Get−eAUG( c a l l N o d e )
12i f ( Is−First−Party ( cal leeAUG ) and
13Should−Inline−Node ( calleeAUG , maxDepth , c a l l S t a c k , inl inedAUGs ) ) :
14iAUG ← Inline−Node ( iAUG , c a l l N o d e , cal leeAUG )
15inl inedAUGs ← { cal leeAUG } ∪ inl inedAUGs
16Inline−Depth−First ( maxDepth , [ cal leeAUG ] + c a l l S t a c k , cal leeAUG )

Listing 4.1 – Pseudo-code describing the main inlining algorithm.

function Inline -Depth -F irst (line 5). This function takes as its input the current
call stack, initially containing the top-level method, and a target eAUG which has
already been inlined in the iAUG, but whose nodes still need inlining. It first discovers
all method call nodes in the target eAUG through the D iscover-Call -Nodes
function (line 8), which returns a list of nodes, ordered by their partial execution
order. This list is ordered in such a way that the algorithm always inlines nodes in
order along a sequential path through a method’s control flow graph, and in case of
branches, inlines nodes sequentially along one branch, halts at the join point of the
branches, inlines the other branch sequentially, and then continues after the join point.
In other words, one branch is fully inlined before the other branch is inlined, leading
to a semi-consistent inlining order since it is undefined which of the two branches is
selected first. One such discovery order is displayed in Figure 4.4a.

The algorithm then considers each node in order, and checks whether the call node
should be inlined. Calls are only inlined if the target method is first-party (line 12),
since API usages consist of interactions with third-party methods and should therefore
not be inlined. The algorithm additionally queries the inlining strategy (line 13), which
decides whether a call should be inlined based on the target method, the maximum
inlining depth, and the previously inlined calls, both globally (inlinedAUGs) and in
the current path down the implicit call tree (callStack). If the node is to be inlined,
it performs the inlining process, which substitutes the target method’s eAUG for the
call node (line 15). The target AUG is added to the set of previously inlined AUGs, so
that this information can be used in later calls to the inlining strategy, and finally the
algorithm descends into the target eAUG itself to find new callees to be inlined. The
traversal is depth-first in the call tree, which is consistent with the execution order: If a
call to a function f is executed before the call to a function g, then all of f’s callees are
executed before g too, and thus, all these callees are inlined before g is inlined. This
pre-order depth-first traversal of the call tree is shown graphically in Figure 4.4b.

Note that, in many of the cases, the inlining order does not make a difference.
However, when a strategy prevents inlining duplicate calls, this order does matter,
since only the very first call to a method will be inlined. There are multiple ways
one can define the “first” call to a method. We take the intuitive approach by stating
that the first call to a method is the earliest possible call executed by the program
at runtime, which is why the traversal is pre-order depth-first. Duplicate removal is
path-insensitive: We deal with branches in control flow by assuming a total order
and analysing one branch before the other, and the resulting set of previously-inlined
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(a) Graphical representation of the call node
discovery in a simplified eAUG. Data nodes
are omitted. Branches in the graph represent
branches in control flow. The dotted arrows rep-
resent the order in which nodes are selected for
inlining in a single graph.

(b) Graphical representation of the inlining order
in a call tree. Execution order of children (callees)
in the tree is left-to-right. The dotted arrows rep-
resent the order in which callees are selected for
inlining.

Figure 4.4 – Graphical representations of the inlining order in a single method (left) and a
collection of methods as a call tree (right).

eAUGs will contain the eAUGs inlined in the first branch when processing the second
branch.

4.2.2 Inlining Strategies

As described in the beginning of this section, there are three main questions one must
answer during inlining. We repeat these questions here for convenience:

– Should recursive calls be inlined?

– Should duplicate calls be inlined?

– Should methods lacking target API usage be inlined?

Inlining recursive and duplicate calls may significantly increase the size of the
resulting iAUG, and may lead to overfitting during the mining phase because of
duplicated phenomena. However, not inlining such calls may cause patterns to miss
significant features, such as necessary repetitions. Similarly, not inlining methods that
contain no direct usage of the targeted API may decrease the size of the resulting iAUG
and lead to more concise patterns, since the iAUGs contain less unrelated phenomena.
However, it will not explore transitive callees found in the skipped method, which may
themselves contain API usages. Such transitive API usages will then be missed.

Answering these questions involves a trade-off between the size of the iAUGs
and the relevance and correctness of the resulting patterns. Thus, we implement six
different inlining strategies, five of which provide different answers to the questions.
These strategies implement the Should -Inline -Node function in the pseudo-code
shown in Listing 4.1. Figure 4.5 shows an overview of the behaviour of the inlining
strategies.
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class C {
void a() {

b(); c(); d();
}
void b() {

api.m(); b();
}
void c() {

api.m(); e();
}
void d() {

e();
}
void e() {

api.m();
}

}

(a) Contrived example code used to illustrate
the inlining strategies. Method a is the top-
level method used in the examples, which is to
be inlined. Method b contains direct recursion,
method c and d contain a duplicate call to e. Ad-
ditionally, method d contains no direct API usage,
but transitively uses the API through e.

a

cb d

b

. . .

e e

(b) The call tree representing the example code.
API method calls are omitted for brevity, as they
are never inlined.

a

cb d

b

. . .

e e

7 7 7

(c) Inlining traversal as guided
by the no inlining strategy.
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cb d
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. . .
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3

3
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3

3

3
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(d) Inlining traversal as guided
by the inlining cutoff strategy,
with a maximum inlining depth
of 2.
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. . .

e e

3

7
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3

(e) Inlining traversal as guided
by the no recursion strategy.
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cb d
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. . .

e e

3

7
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(f) Inlining traversal as guided
by the no duplicates strategy.

a

cb d

b

. . .

e e

3

7
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(g) Inlining traversal as guided
by the no recursion strategy with
pre-emptive cutoff.

a

cb d

b

. . .

e e

3

7

3

3

7

(h) Inlining traversal as guided
by the no duplicates strategy
with pre-emptive cutoff.

Figure 4.5 – Examples illustrating the inlining strategies. Figure a shows the example code,
Figure b the corresponding (simplified) call tree. Figures c–h show the inlining traversal
under different strategies. Calls that are decided to be inlined by the strategy are labelled
with a green tick, whereas calls that are ignored are labelled with a red cross. Maximum
inlining depth for all strategies is set to 2.

47



Chapter 4. Inter-Procedural Analysis by Inlining Graphs

The No Inlining Strategy This first strategy is trivial: It always returns false when
asked if a node should be inlined. This allows our tool to be customised to only
mine and detect intra-procedurally. Using this strategy, no inlining ever takes place.
We include this strategy mainly to compare our approach to MUDetect in the
evaluations, and is not intended to actually be used in practice. Figure 4.5c shows a
typical application of this strategy. Note that the depth-first traversal of the call tree is
still applied, but the strategy simply prevents any inlining or further exploration of the
tree.

The Inlining Cutoff Strategy The second strategy is similar to the one implemented
in the first version of MAPO (Xie & Pei, 2006). This strategy inlines every method
call up to a given maximum inlining depth d, and thus answers the main questions as
follows:

– Should recursive calls be inlined? Yes.

– Should duplicate calls be inlined? Yes.

– Should methods lacking API usage be inlined? Yes.

The inlining cutoff strategy decides on whether a node should be inlined by
calculating the depth of the current path down the call tree, using the given call stack,
and comparing it to the maximum depth. It allows methods to be inlined as long as
it would not exceed the maximum inlining depth. Figure 4.5d shows this strategy in
action with a maximum call depth of 2: It allows all of the nodes on levels 1 and 2 of
the call tree to be inlined, but cuts off the exploration at level 3.

The No Recursion Strategy Our third strategy eliminates recursive calls during
inlining. Whenever a call would lead to recursion, either directly or indirectly (such
as in mutual recursion), the call is prevented from being inlined to avoid duplicated
phenomena in the resulting iAUG. This strategy is also parametrised with a maximum
inlining depth, as in the inlining cutoff strategy, to prevent iAUGs from getting too
large. As such, it provides the following answers to our three main questions:

– Should recursive calls be inlined? No.

– Should duplicate calls be inlined? Yes.

– Should methods lacking API usage be inlined? Yes.

We keep track of potential recursion by maintaining a stack of ancestor eAUGs
throughout the descent of the call tree, i.e. the path of methods entered to reach the
method call to be inlined. This stack resembles the call stack of the program at runtime
if it started at the top-level method and reached the method call on which the strategy
has to decide. To determine if the call would lead to recursion, we then simply have to
check whether the callee eAUG is present in this stack. If it is, the strategy prevents
the call from being inlined. Additionally, it cuts off the exploration if it exceeds the
maximum inlining depth, in a manner identical to the cutoff strategy. An exploration
using this strategy is shown graphically in Figure 4.5e, where the inlining process cuts
off at the recursive call to b and continues with c.
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The No Duplicates Strategy The fourth strategy implemented in our tool eliminates
both duplicate calls and recursive calls, and is inspired by the strategy employed in the
second version of MAPO (Zhong et al., 2009). Note that recursion is a special case of
duplication, and thus it does not make sense to have a strategy that removes duplicate
calls, but not recursive calls. This strategy prevents a call from being inlined it is has
ever been inlined before, not necessarily in the same path down the call tree. This way,
we only retains the call which is executed first at runtime. Retaining duplicates in the
iAUG leads to potential overfitting during the mining, since the duplicated evidence
may be considered a pattern if it occurs too frequently. Thus, preventing duplicates
may help prevent overfitting. In short, this strategy’s answers to the main questions
are:

– Should recursive calls be inlined? No.

– Should duplicate calls be inlined? No.

– Should methods lacking API usage be inlined? Yes.

During the traversal of the call tree to inline calls, the algorithm maintains a set
of all eAUGs that are already inlined into the iAUG. When the eAUG of the callee to
be inlined is already present in this set, the call is a duplicate and is skipped by the
exploration guided by this strategy. The no duplicates strategy also extends the cutoff
strategy, to limit the exponential growth of the iAUG, and thus may decide to not
inline a call even if it is not a duplicate, but exceeds the depth threshold. Figure 4.5f
displays this strategy applied on the example code. As with the previous strategy, the
recursive call to b is not inlined, since recursion is removed. Additionally, we prevent
inlining of the second call to e, which is called by d, since e has already been inlined
through c, and is therefore a duplicate.

The No Recursion Strategy With Pre-Emptive Cutoff To further keep the iAUG
from growing to an excessive size due to the exponential growth of inlining calls, our
fifth strategy prevents inlining any method in which it cannot find direct proof of
API usage. This removes many unrelated phenomena in the final inlined AUG, but
may also incorrectly remove API usage from the method’s transitive callees. This is
because we only check for API usage intra-procedurally in the eAUG to be inlined,
and stop inlining pre-emptively if there is no usage. Our reasoning is that API usage in
transitively called methods is likely unrelated to the usage found in the caller if the
intermediate method contains no usage whatsoever. Our three main inlining questions
are answered below.

– Should recursive calls be inlined? No.

– Should duplicate calls be inlined? Yes.

– Should methods lacking API usage be inlined? No.

This strategy builds further upon the no recursion strategy, so it first checks for the
inlining depth cutoff and the recursion elimination. Only when both of these checks
return a positive result, allowing the call to be inlined, will this strategy check for API
usage in the callee’s eAUG. If this eAUG contains no usage of the target API, it is not
selected for inlining. This is shown in Figure 4.5g, where the call to method d is not
inlined since it does not contain any direct API usage. This example also shows that
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the second call to e is never considered for inlining, even though it contains an API
usage, since we check for API usage intra-procedurally.

Two more points are noteworthy. First, this strategy only makes sense when we are
targeting one or more specific APIs. When no API is targeted specifically, our goal is
to mine patterns involving any API, and we can therefore not prevent inlining of any
method. Second, this strategy does not prevent inlining if the top-level method contains
no direct API usage. This can also be seen in the example: The method a contains no
direct API usage, but its callees are still inlined. This approach is intentional, so that
our tool can discover patterns scattered across multiple sibling callees although the
top-level method contains no direct usage. For example, recall the call tree given in
Figure 4.3, and assume that function f contains no direct usage, but functions g and h
contain a usage which, if composed, make up a meaningful pattern. Even though f
contains no usage, inlining its callees will uncover a usage which is otherwise difficult
to detect, since g and h are not directly related in a caller-callee relation.

The No Duplicates Strategy With Pre-Emptive Cutoff Our tool’s final inlining
strategy combines the previous two strategies to provide a negative answer to each of
the main inlining questions:

– Should recursive calls be inlined? No.

– Should duplicate calls be inlined? No.

– Should methods lacking API usage be inlined? No.

As such, this strategy is able to remove more irrelevant or duplicated phenomena
than any of the other strategies. In essence, it is the logical conjunct of the result of the
no duplicates strategy, and a pre-emptive cutoff as in the previous strategy. Figure 4.5h
shows this graphically, and leads to the same exploration as the previous strategy. This
is because the call to method d is ignored by the pre-emptive cutoff. However, if d
were instead to contain an API usage of its own, the resulting exploration would be
equivalent to the one in Figure 4.5f.

Summary of Inlining Strategies Five of the six strategies are designed to provide
differing answers to our three main questions, which leads to different iAUGs and thus,
different patterns. We empirically evaluate each of these strategies in our evaluation, to
determine which strategies lead to better recall and precision. The no inlining strategy
is designed to perform no inlining, as is evident from its name, and is only present as
a comparison to MUDetect. We summarise the six strategies in Table 4.1.

4.2.3 Inlining Individual Callees

We have yet to describe how method bodies are inlined into the iAUG of their caller.
Although this may appear as a trivial task of copying over nodes and edges, one must
carefully take the semantics of the methods into consideration, ensuring that control
and data flow between the caller and callee is consistent. Since method boundaries are
erased, we must appropriately adjust the composite graph’s edges. For instance, the
callee’s control flow should not influence the control flow of the caller, but the callee
should inherit the control flow of the caller. For example, when the callee is called in a
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Inline. . .

Strategy
recursive

calls?
duplicate

calls?
calls w/o

API usage?
Inlining depth

No inlining 7 7 7 0

Depth cutoff 3 3 3 > 1

No recursion 7 3 3 > 1

No duplicates 7 7 3 > 1

No recursion with
pre-emptive cutoff

7 3 7 > 1

No duplicates with
pre-emptive cutoff

7 7 7 > 1

Table 4.1 – Overview of the behaviour of the inlining strategies

branch, the inlined graph should be extended so that the callee’s nodes are also called
in the branch. Additionally, the caller and callee may share the same data, for example
through parameters or instance fields, and thus, when the callee is inlined, its data
nodes must be adjusted and shared with the caller.

A condensed version of the Inline -Node function, which inlines the method
body of a method call target into an iAUG, is shown in Listing 4.2. It consists of two
main steps. First, we inject the nodes and edges of the callee’s eAUG into the iAUG of
the caller, leading to two disconnected subgraphs in the iAUG. Then, we connect the
two disconnected subgraphs based on the incoming and outgoing edges of the original
call node. Many of the different edge types need to be handled uniquely, to account for
semantics. Additionally, these functions may add new edges, for example to instantiate
a transitive relation.

As mentioned above, we must ensure that inlining the callee does not lead to
undesired changes to the control flow of the caller. The callee’s graph may contain
nodes that influence its control flow, and when connecting it to the inlined AUG, these
nodes may lead to such undesired changes. There exist four action node types that
denote changes in control flow: Return nodes, throw nodes, continue nodes and break
nodes, which correspond to their respective statements. The latter two do not form a
problem, as they are local to a loop in the callee, and therefore cannot influence the
existing control flow of the caller. The former two cause an escape from the control
flow of the callee and, when inlined into the caller, may mistakenly cause an escape
from the caller’s control flow instead. This is illustrated in Figure 4.6. The first example
shows the presence of a break statement, which solely influences the control flow in a
loop. Naively inlining this code into the caller does not lead to changes in the caller’s
control flow outside of this loop. However, the second example shows a naive inlining
of a return statement, which does lead to changes in the caller’s control flow. Due to
naively inlining this statement, the call to doB is never executed, whereas in the original
code, it would be executed. Note also that this breaks the typing of the method: caller
is said to not return anything, but naively inlining would lead to the method returning
an integer.

Thus, when injecting nodes into the caller’s iAUG, we do not copy over return
nodes to prevent such cases from happening. Return nodes are used in one of two
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1function Inline−Node ( iAUG , c a l l N o d e , cal leeAUG )
2returns "the iAUG with cal lNode rep laced by calleeAUG"
3for c a l l e e N o d e ∈ Nodes ( cal leeAUG ) do :
4i f Type−Of ( c a l l e e N o d e ) 6= ReturnNode :
5Add−Node( iAUG , c a l l e e N o d e )
6

7for c a l l e e E d g e ∈ Edges ( cal leeAUG ) do :
8i f Type−Of ( Target ( c a l l e e E d g e ) ) 6= ReturnNode :
9Add−Edge( iAUG , c a l l e e E d g e )
10

11for inEdge ∈ Incoming−Edges−Of ( c a l l N o d e , iAUG ) do :
12switch Type−Of ( inEdge ) do :
13case OrderEdge ⇒ Relink−Incoming−Order−Edge ( inEdge )
14# . . .
15

16for outEdge ∈ Outgoing−Edges−Of( c a l l N o d e , iAUG ) do :
17switch Type−Of ( outEdge ) do :
18case OrderEdge ⇒ Relink−Outgoing−Order−Edge( outEdge )
19# . . .
20

21Remove−Node( iAUG , c a l l N o d e )
22return iAUG

Listing 4.2 – Pseudo-code describing the Inline -Node function of the inlining algorithm.

cases: To signify an early change in control flow of the callee, or to propagate data from
the callee to the caller. When inlining, the former case is handled by execution order
edges, whereas the latter case is handled by sharing the callee’s returned data node
with the caller. Therefore, the callee’s return nodes are unnecessary and undesired in
the caller’s inlined AUG. Note that throw nodes are still injected into the caller, even
though they may cause control flow changes as well. However, a throw statement in a
callee method’s body may influence the control flow of the caller if the caller fails to
catch the exception. Thus, we copy over throw nodes during the inlining, and link it
to exception-handling nodes of the caller if such nodes are present. This ensures that
the caller’s control flow is equivalent to a non-inlined version, regardless of whether it
catches the exception.

In short, our first step of the inlining injects the callee’s nodes and edges into
the caller, except for return nodes and edges connecting to such nodes, to ensure no
changes to control flow are mistakenly introduced. The second step then relinks the
edges of the call node to connect the inlined graph, potentially adding edges to keep
control and data flow consistent. We describe this process for each of the potential edge
types graphically in the remainder of this subsection.

Relinking Data Flow Edges

Data flow edge adjustments often involve merging a data node from the caller with a
data node of the callee, to indicate that both share the same data. Thus, we distinguish
five cases of adjustments that need to be made, based on the data edge that is being
used. For outgoing definition edges, we merge the data returned from the callee with
the data node of the caller that is defined by the call. The callee’s parameter data nodes
are merged with the caller’s argument data nodes, as linked to the call with incoming
parameter edges. An incoming receiver edge to the call in the caller iAUG is handled
by both merging the callee’s this instance with the receiver, and merging any shared
instance field usage across the caller and callee. Outgoing throw edges that link the
original call to the exceptions it may throw are relinked to the nodes in the callee that
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class C {
void caller() {

doA();
callee();
doB();

}

void callee() {
for (int i = 0; i <= 5; i++) {

if (i % 2 == 0) {
break;

}
}

}
}

(a) Example of a callee with a node that influ-
ences control flow local to a loop.

class C {
void caller() {

doA();
for (int i = 0; i <= 5; i++) {

if (i % 2 == 0) {
break;

}
}
doB();

}
}

(b) Naively inlining the callee of the example in
Figure a into the caller. This does not lead to
undesired changes in control flow of the caller.

class C {
void caller() {

doA();
callee();
doB();

}

int callee() {
return 0;

}
}

(c) Example of a callee with a node that influences
control flow of the whole method.

class C {
void caller() {

doA();
return 0;
doB();

}
}

(d) Naively inlining the callee of the example in
Figure c into the caller. This leads to undesired
changes in the control flow of the caller.

Figure 4.6 – Examples illustrating undesired control flow changes through naive inlining.
On the left are original examples, on the right are the examples where the callee method
has been inlined into the caller method in a naive manner.
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may throw this exception. Finally, incoming containment edges tell us that a method
call is contained within a method body of an anonymous class instance, or a lambda,
and hence, all inlined nodes of the callee are also contained within this method body.
A graphical representation of the relinking process for each of these cases is shown in
Figure 4.7, and is further explained below.

The observant reader may notice that certain connection types are not handled.
This is because such connections cannot be present in the AUG. For example, qualifier
edges can only connect two data nodes, and thus never involve a method call node.
As another example, a parameter edge can never have a method call node as a source,
since it links a data node used as a parameter to the use site of the parameter, and a
call can never be a parameter.4 In general, data flow edges always involve at least one
data node as either its source or its target, and thus call nodes can only be present at
one side of the edge.

Outgoing Throws Edges A “throws” edge starting at a call indicates that this call
may lead to an exception being thrown, which is then caught by the caller. This happens
when a call is placed inside of the try-block of a try-catch construct. When we inline the
callee, we then must also ensure that its actions are considered part of this try-clause.
However, not all actions in the callee throw an exception that is caught, and naively
relinking the throws edge would lead to superfluous edges. Thus, we identify the
callee’s action nodes that may throw an exception that is caught by the caller, and add
a throws edge going from these action nodes to the exception that is thrown.

Figure 4.7a shows an example of this. The callee can contain two types of nodes
that may throw an exception: A direct throw node (on the right in the callee) and a
transitive method call that may throw the exception (on the left). Both of these are
then connected to the thrown exception. Note that we account for subtype relations
using additional type hierarchy information, and use a method’s throws information to
determine whether it may throw the exception. Additionally, we ignore any potentially
thrown exceptions if they are already caught by the callee itself.

Outgoing Definition Edges When a method call returns data to the caller, and the
caller uses this data by e.g. storing it in a variable or chaining it into a new method
call, the caller will contain a data node which is defined by the call, as indicated by an
outgoing definition edge. Such an example is shown in Figure 4.7b, where the call to
callee defines the data node data 1, which is later used in action A. The callee then
contains a return node, and the returned data node is connected to this node by a
parameter edge. In the example, this data node is data 2, produced by action B.

Essentially, data 1 and data 2 would be the same data node in the inlined AUG,
and since return nodes are removed for reasons described earlier, we need to relink
such edges correctly. Thus, we remove data 1, the data node of the caller, and retain
data 2, the data node of the callee, with all of the edges present in the callee. All of
the outgoing use edges of data 1, such as the use edge to action node A, are relinked
to have the callee’s node as the source. Therefore, we make the data sharing relation
between caller and callee concrete. Note that if a callee may return one of multiple data
nodes because of branching, then all of the callee’s returned data nodes are retained,
and they receive the same relinking.

4In source code, this is not necessarily true: There may be cases where the return value of a call is
immediately passed as an argument to another call. However, in AUGs, such chaining is represented using
additional temporary data nodes.
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Figure 4.7 – Condensed overview of data flow edge relinking during inlining. The partially
inlined AUG of the top-level caller is displayed in the upper left portion of the figure, the
lower left portion shows the callee’s eAUG. The right-hand side of the brace shows the
iAUG of the caller with the callee’s eAUG inlined and the edge relinked. Irrelevant nodes
and edges are omitted from the representation. Action nodes whose type is irrelevant carry
generic labels such as A and B.

Incoming Parameter Edges A similar data sharing relation takes place when a caller
provides the callee with data via call arguments. Such a case is illustrated in Figure 4.7c,
where the call to callee receives two arguments: data 1 and data 2. The order in
which these parameters are given can easily be identified by inspecting the parameter
edges’ labels. The callee then has two different data nodes for the arguments, here data
3 and data 4. Using our eAUG representation, which maps parameter indices to the
data nodes representing the parameter values, we can also easily identify which data
node corresponds to which parameter, and we can therefore relate data 1 in the caller
to data 3 in the callee, and data 2 to data 4.

When inlining the callee into the caller, we then remove all data nodes corresponding
to parameter values of the callee, and instead use the data nodes used as arguments in
the caller. To this extent, our tool relinks the outgoing use edges of the data values to
have the argument data as the source node instead. We can see this in the example,
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where the inlined AUG contains the two action nodes of the callee, but uses the data
nodes of the caller instead.

Incoming Receiver Edges Callers not only share data with callees via parameters,
they may also share data via the callee’s receiver instance, i.e. the object on which the
callee method is called. In this case, we need to ensure both that the this object in the
callee is consistent with the receiver of the method call, and that the fields of this object
which are used in the callee, are shared with the caller.

In the illustration in Figure 4.7d, the caller calls the method callee on the object
obj, and also uses this object’s field field elsewhere. The callee uses its own instance
(this) and this field in an action B, as well as a new field other, unknown to the caller,
in an action A. When we inline this callee into the caller, we need to make sure that
the action B uses obj rather than this, as to not confuse it with a call on the caller’s
instance. We additionally need to ensure that the data node for obj.field is shared
among the caller and callee, as well as the data node for obj.other, so that any future
inlinings can share it. This can be seen in the inlined AUG on the right-hand side of
the brace, where the callee’s action B now uses the data nodes of the caller, and the
callee’s data node for the other field is now annotated to be a field of obj.

Incoming Containment Edges When a method constructs an instance of an anonym-
ous class, such as a lambda, this instance is modelled as an anonymous class instance
node. Such anonymous classes contain methods themselves, which are also modelled as
anonymous method nodes. To model the code of these methods, a sub-AUG is created
for the anonymous method, and linked to the data node representing the anonymous
method via containment edges. Since such anonymous methods may themselves call
other methods, these other methods are inlined as well, and hence a call can have
an incoming containment edge. These are handled straightforwardly by instantiating
containment edges for all inlined nodes, as shown in Figure 4.7e.

Relinking Control Flow Edges

Recall from Section 3.1 that an AUG can contain five types of control flow edges. We
additionally consider the exception-handling edge, classified as a data flow edge, to
be a control flow edge, as its relinking involves control flow information rather than
data flow information. From these six edge types, we distinguish nine different cases
to consider when relinking control flow edges: For order edges, finalisation edges,
condition edges (both selection and repetition), and synchronisation edges, we consider
both incoming and outgoing edges involving the call node. For exception-handling
edges, we only consider incoming edges, since such edges always start at a catch node.
We handle each of these cases uniquely, as illustrated in Figure 4.8.

Order Edges When a method performs a call to a callee, all of the callee’s actions
are executed after the caller’s actions leading up to the call, and executed before the
caller’s actions following the call. Thus, when inlining a callee, to retain this ordering,
we link up the call’s direct and indirect incoming order edges to the source action
nodes of the callee’s eAUG. To instantiate the transitive execution order relation, we
duplicate these edges to all of the action nodes that are reachable from the eAUG’s
source node, and mark them as transitive. This is shown in Figure 4.8a. An analogous
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Figure 4.8 – Condensed overview of control flow edge relinking during inlining, follow-
ing the same structure of Figure 4.7. Irrelevant nodes and edges are omitted from the
representation.
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case is made for outgoing order edges, as shown in Figure 4.8b, but here we instantiate
transitive order edges from all nodes that may reach a sink node.

Condition Edges A call may be involved in a condition edge in one of two ways: It
may be executed in a certain branch, or it may form a part of the condition that controls
the branching. Recall that condition edges are only present between a condition and a
node executed in a branch if the nodes share a data dependency. Thus, in both cases,
we need to identify data dependencies between the action nodes in the call and the
action node at the other side of the edge, which requires knowledge of data sharing
relations between caller and callee. Therefore, this relinking is deferred until all data
flow edges have been relinked.

When the call is a part of a branch, i.e. the condition edge has the call as the target,
we identify all action nodes in the callee that are data-dependent on the condition, and
instantiate the appropriate condition edges between the branching condition and the
inlined callee action nodes. This is illustrated in Figure 4.8c, where node A shares data
with the condition, whereas B does not.

When a call is instead a part of the condition, where the condition edge has the
call node as source, we need to link all of the callee’s action nodes that may influence
the outcome of the condition to the caller’s action node executed in the branch. To
identify such action nodes in the callee, we start at its data sinks and traverse upwards
in the callee’s eAUG, following data flow edges to discover action nodes on which the
condition is data-dependent. We then instantiate the appropriate condition edge for
each of these action nodes of the callee. This is illustrated in Figure 4.8d, where the
callee’s action node A is identified as an influential node.

Synchronisation Edges Relinking synchronisation edges is fairly similar to relinking
condition edges. When the call is the target of a synchronisation edge, i.e. the call is
executed while the program holds a lock on some data, we relink this synchronisation
edge to all of the callee’s action node that are data-dependent on this lock. Figure 4.8e
shows this for a caller that takes a lock on a data node.

When a call is instead the source of a synchronisation edge, this indicates that
the program takes a lock on the return value of the call. Thus, we identify the data
node that may be returned by the call by inspecting the callee’s eAUG, and relink the
synchronisation edge from this returned data node. If the call may return multiple
distinct data nodes, we aggregate these data nodes into a new auxiliary node and
relink synchronisation edges from this aggregate node. Alternatively, if we were to
relink synchronisation edges from each of these distinct nodes individually, this may
be confused with taking multiple locks, whereas in reality only a single lock is held.

Exception Handling and Finalisation Edges A call node may be the target of an
exception handling or finalisation edge if the call is made in a catch or finally block of
a try-catch-finally construct. Intuitively, when a method is called as part of exception
handling code, all of the callee’s action are also part of exception handling code. Thus,
the exception handling edge is relinked to all of the callee’s inlined action nodes, as
shown in Figure 4.8i. Figure 4.8g shows the analogous case for incoming finalisation
edges.

A call node may also be the source of a finalisation edge, when the call is made in
the try block of a try-catch-finally construct, and there is a finally block defined in the
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construct. Whenever an exception is thrown in the call, the finalisation code is executed,
and therefore we relink the finalisation edges to start from all nodes that may throw
an exception, which are direct throw nodes and transitive calls that may lead to an
exception. This is similar to the relinking of throws edges, explained previously, and is
illustrated in Figure 4.8h. Note that an analogous case could be made for exception
handling edges, yet such edges do not appear in an AUG, since exception handling
edges always have a catch node as their source, whereas finalisation edges do not, since
finalisation code may be present even when the exception is not caught.

4.3 Inter-Procedural Filtering

Since patterns are mined from iAUGs rather than intra-procedural AUGs, the resulting
patterns are inter-procedural as well. During violation detection, we continue to use
the iAUGs to compute overlaps between a pattern and a target, so that we can detect
pattern instances and violations in transitively called methods. However, due to this
inter-procedural analysis, we may run into an increase in false positives caused by
partial pattern overlaps in callees which are “completed” by the caller. This is alluded
to by Li and Zhou (2005), who employ two different inter-procedural techniques to
remove false positives. A violation in PR-M iner is one or more missing API calls
in a function. If a function is missing an API call, they first check whether any of the
function’s callees contains the call, and then whether all of the callers of the function
contain this call. If any of these two conditions is met, the violation is a false positive,
since the API call is always present in the context of the function.

The former condition is unnecessary to check in our tool, since we detect overlaps
inter-procedurally through iAUGs and hence, can detect continuations of pattern
instances in a method’s callees. However, the latter condition still needs to be checked,
and in actuality, because of our usage of inter-procedural patterns, may cause many
more false positives. We may additionally obtain duplicate violations, which cannot be
considered false positives because there is an actual violation of the pattern, but only
one of the violations is relevant to be considered a real misuse. We describe both of
these cases by example in Section 4.3.1, and introduce our general inter-procedural
filtering algorithm in Section 4.3.2.

4.3.1 False Positives and Duplicate Violations

To illustrate the problem of inter-procedural false positives and duplicate violations,
assume we have a pattern of the form DB.connect; DB.query; DB.close, stating
that these three methods must be called on a database object in order. We simplify
our pattern for generality and brevity, but this can easily be extended to the AUG
representation. As we will see later in this section, our filtering algorithm does not rely
on the AUG representation, and can equally be used in other inter-procedural detection
settings. The code example in Figure 4.9a shows an inter-procedural instance of this
pattern rooted at the executeQuery method: All three of the methods are called in
order, one (DB.connect) is called transitively through the connectToDB method. When
our tool detects violations of the pattern in the executeQuery method, it receives the
iAUG for this method, which has the DB.connect call inlined into it, so it can find
the instance as expected. However, when our tool starts its violation detection at the
connectToDB method, it finds a partial overlap between the pattern and this method:
The call to DB.connect is present, yet neither DB.query nor DB.close are found in the
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class DBQueryEngine {
Result executeQuery(String query) {

DB db = new DB("localhost", 5000);
connectToDB(db);
Result result = db.query(query);
logger.debug("Executed query");
db.close();
return result;

}

void connectToDB(DB db) {
logger.debug("Connecting to DB");
db.connect("admin", "*****");
logger.debug("Connected to DB");
// more logging, telemetry, ...

}
}

(a) Code example showing an instance of the pattern.

class DBQueryEngine {
Result executeQuery(String query) {

DB db = new DB("localhost", 5000);
connectToDB(db);
db.close();
return result;

}

void connectToDB(DB db) {
logger.debug("Connecting to DB");
db.connect("admin", "*****");
logger.debug("Connected to DB");
// more logging, telemetry, ...

}
}

(b) Code example showing a violation of the pattern.

Figure 4.9 – Contrived code examples showing an inter-procedural instance and an inter-
procedural violation of the pattern DB.connect; DB.query; DB.close.

method itself, or any of its callees. Such a partial overlap would mistakenly be flagged
as a violation, although all of the method’s callers (here, only executeQuery) ensure
the pattern is instantiated completely.

The second code example, shown in Figure 4.9b, contains an inter-procedural viol-
ation of the pattern: Both DB.connect and DB.close are called, but the call DB.query
is missing in both caller and callee. Our tool would report a violation present in both
executeQuery as well as connectToDB, since the former is missing the query, and the
latter is missing both the query and the closing of the connection. In both cases, the
query is missing, so there is one real violation, the other violation is a duplicate of
the first one. Let us assume the call to DB.query needs to be placed in the caller, and
thus, the caller is to blame for the violation: The violation in the callee would be a
false positive, falling into the same category as the one above, but cannot be detected
as such, since not all of connectToDB’s callers correctly instantiate the pattern. On the
other hand, assume that the call needs to be present in the callee instead. Then, the
violation in the caller is actually present transitively, but should not be reported, since
the caller is actually not to blame, and the callee should be fixed instead.

It is generally difficult, if not impossible, to determine whether an absent call should
be present in the caller or the callee. In this example, the violation is on a method
boundary, making this task even more difficult: One part of the pattern is instantiated
in the caller, another part in the callee, and the missing part is in the middle of the two
instantiated parts. We cannot reliably determine whether it is the caller or the callee
which should instantiate this missing portion. Although our representation erases
method boundaries, opting to keep these does not alleviate this problem completely. It
would allow us to state, for example, that the majority of instances of the pattern have
the caller instantiate the portion of the pattern. However, only the developer who wrote
the code really knows what the intent is. Yet, we still need to filter out such duplicate
violations, and thus, we need to resort to heuristics.

To heuristically determine which method is to be blamed for a given violation, we
investigate the callers of a method. Given a pair of caller and callee methods containing
the same violation, our tool inspects the all of the callee’s other callers in search of the
same violation. If all of these other callers contain the same violation, we heuristically
determine that the callee is to be blamed for the violation, based on the insight that it is
less likely to repeat the same mistake many times. If, however, at least one other caller
instantiates the pattern correctly, we shift the blame to the caller that does contain the
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violation. Indeed, if it were instead the callee that contained the violation, any other
caller would suffer the same violation as well.

However, we must still take care when blaming a certain method for a violation,
since this method’s other callees may be causing the anomalous behaviour instead.
For instance, if we blame the caller for a violation, we determine the partial overlap
in the callee to be a false positive due to a strict subpattern which cannot be detected
as such because of a true violation in the caller. However, this true violation in the
caller may be caused by one of the caller’s other callees, unrelated to the callee that
was considered before. Similarly, if we shift the blame to the callee, the violation may
actually be caused by the callee’s own transitively called methods. Thus, the process of
blaming the method that is most likely to be causing the issue is very much an iterative
process of refinement of our beliefs.

4.3.2 Filtering Algorithm

Using the insights gained from the previous subsection, we design five general rules to
decide on whether a violation of a pattern in a method m is a false positive, duplicate,
or likely misuse:

1. If none of the callers of m contain a violation of the same pattern, the pattern
violation in m is considered a false positive. The violation is a partial instance
of the pattern, and this instance is completed inter-procedurally by all of the
method’s callers;

2. If the callee has exactly one caller c which contains a violation of the same pattern,
we heuristically decide on which of the two to blame for the violation based on
the number of missing elements in their respective violations:

(a) If both violations are missing the same number of graph elements, we decide
the violation is caused by the callee m, and consider the violation in c to
be a duplicate. In other words, the caller does not add pattern elements to
the callee, and thus the partial pattern instance is completely present in the
callee. Therefore, we heuristically determine the callee to be the cause of the
violation as well;

(b) If the caller’s violation is missing less graph elements than the callee’s
violation, the caller is blamed for the violation, since it further completes
the partial pattern instance in the callee. We assume here that the callee
has a contract which the caller fails to satisfy. Additionally, from a usability
point-of-view, if we report the caller as containing a misuse, and in reality
the misuse resides in the callee, it is easier for a user to spot that the callee
may be causing the misuse instead. However, if we report the callee as
containing the misuse, and the misuse is actually caused by the caller, the
user may instead classify the reported violation as a false positive, without
inspecting the caller;

3. If m has multiple callers, and all of these callers contain a violation of the same
pattern, we blame the callee, and consider all callers to be duplicate violations.
Our reasoning is that it is less likely to repeat the same mistake in all of the
callers, and it is therefore more likely that the callee is causing the violation. Note
that this is a heuristic, since it may be possible that all of the callers actually do
contain the same mistake;
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4. If m has multiple callers, and at least one of the callers does not contain a violation
of the same pattern, we blame all of the callers that do contain the violation, and
consider m to be a false positive that cannot be discovered using Rule 1 due to
this violation in the callers. If the violation was instead present in the callee m,
all of its callers would contain the same violation.

Note that when we blame a certain method of a violation, we are not specifying that
this method itself is the cause of the violation. The violation could instead be caused
by the method’s other callees, which needs to be investigated afterwards. Our rules
merely state that a certain method is likely not causing the violation. If we apply these
rules iteratively to eliminate candidate violations, in the end, we obtain the methods
that cannot be eliminated using these rules, and thus, are actual violations.

Listing 4.3 describes our inter-procedural filtering algorithm using these five rules
in pseudo-code. It takes as input the set of potential violations, which are initially all
classified as undecided. It then categorises the violations as confirmed, false positive,
or duplicate, in two phases: First categorising false positives according to Rule 1, then
categorising duplicates according to the remaining rules. Both of these phases are
implemented as fixpoint iterations, which continually refine the classification using the
insights gained from previous iterations. Finally, once both phases have finished, all
violations that are marked as false positives or duplicates are removed, and the filter
outputs the violations that are either confirmed, or still unknown, in which case the
rules are not powerful enough to reliably determine duplicates.

Removing false positives due to strict subpatterns that are extended to complete
instances by its callers is implemented by the function Remove -Subpattern -False -
Positives (lines 7–16). If a violating method has callers, and none of its callers contain
an actual violation of the pattern, the violation is marked as a false positive (Rule 1).
The function No -Callers -Violate returns true if all of the method’s callers either
do not contain a violation, or contain a violation that has been previously marked as a
false positive. Thus, we employ fixpoint iteration to continually refine the classification
if any new violations have been marked as false positives. To illustrate, consider we
have three methods, a, b, and c, where a calls b and b calls c. Thus, b is inlined into a, c
is inlined into both a and b. In the first iteration of the algorithm, b may get marked as a
false positive, since a extends its partial pattern instance to completion. However, c may
not get marked as such since, depending on the iteration order over the violations, b is
still considered an actual violation, and thus, not all of c’s callers are free of violations.
In a second iteration, b is now marked as a false positive, and c can be determined as a
false positive as well. In the third iteration, no changes to the classification are made,
and the fixpoint algorithm terminates.

The second function, Remove-Duplicates, implements Rules 2–4 to remove
duplicate violations. First, if we already know that at least one of the violating method’s
callers is confirmed to cause the violation, we can mark the violation, and any potential
violations in the method’s callees, as a duplicate (lines 20–21). Otherwise, we check
the callers of the violating method to determine who to blame. If the violating method
has exactly one caller, which necessarily contains the same violation,5 we check for
the number of missing elements in both violations, as dictated by Rule 2. If the caller
extends the pattern, i.e. has less missing pattern elements than the callee, we mark
the violations of the same pattern in the callee, and any of its transitive callees, as
duplicates, and blame the caller (Rule 2(a), lines 23–26). Otherwise, the caller does not
further extend the pattern, and the blame is fully put on the callee. Thus, the caller’s

5If the caller did not contain the same violation, the violating method would already be filtered out
previously.
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1function Violation−Filter ( v i o l a t i o n s )
2returns "the se t of v i o l a t i o n s , with dup l i c a t e s and f a l s e p o s i t i v e s removed"
3v i o l a t i o n s ← Remove−Subpattern−False−Positives ( v i o l a t i o n s )
4v i o l a t i o n s ← Remove−Duplicates ( v i o l a t i o n s )
5v i o l a t i o n s ← Retain−Only−Confirmed−And−Unknown ( v i o l a t i o n s )
6return v i o l a t i o n s
7

8function Remove−Subpattern−False−Positives ( v i o l a t i o n s )
9for v i o l a t i o n ∈ v i o l a t i o n s do :
10i f (Has−Callers ( v i o l a t i o n . method )
11and No−Callers−Violate ( v i o l a t i o n . p a t t e r n ) ) :
12Mark v i o l a t i o n as False−Positive
13

14i f v i o l a t i o n s have changed :
15return Remove−Subpattern−False−Positives ( v i o l a t i o n s )
16e lse :
17return v i o l a t i o n s
18

19function Remove−Duplicates ( v i o l a t i o n s )
20for v i o l a t i o n in v i o l a t i o n s do :
21i f any of Same−Violation−In−Callers ( v i o l a t i o n . method ) i s Confirmed :
22Mark v i o l a t i o n as Duplicate
23Mark c a l l e e V i o l a t i o n s as Duplicate
24e lse i f Has−One−Caller( v i o l a t i o n . method ) :
25i f Caller−Extends ( v i o l a t i o n . p a t t e r n ) :
26Mark v i o l a t i o n as Duplicate
27Mark c a l l e e V i o l a t i o n s as Duplicate
28Mark c a l l e r V i o l a t i o n as Confirmed
29e lse :
30Mark c a l l e r V i o l a t i o n as Duplicate
31e lse i f Has−Multiple−Callers ( v i o l a t i o n . method ) :
32i f All−Callers−Violate ( v i o l a t i o n . p a t t e r n ) :
33Mark c a l l e r V i o l a t i o n s as Duplicate
34e lse i f Some−Callers−Violate ( v i o l a t i o n . p a t t e r n ) :
35Mark v i o l a t i o n as Duplicate
36Mark c a l l e e V i o l a t i o n s as Duplicate
37i f a l l of Other−Callee−Violations ( c a l l e r ) are Duplicate :
38Mark c a l l e r V i o l a t i o n as Confirmed
39e lse i f any of Other−Callee−Violations ( c a l l e r ) i s Confirmed :
40Mark c a l l e r V i o l a t i o n as Duplicate
41

42i f ( v i o l a t i o n i s Unknown
43and a l l of Same−Violation−In−Callees ( v i o l a t i o n ) are Duplicate ) :
44Mark v i o l a t i o n as Confirmed
45

46i f v i o l a t i o n s have changed :
47return Remove−Duplicates ( v i o l a t i o n s )
48e lse :
49return v i o l a t i o n s

Listing 4.3 – Pseudo-code describing the inter-procedural filtering algorithm.

violation is marked as a duplicate (Rule 2(b), line 28). Note that we do not mark the
callee as a confirmed violation, since the violation may instead by caused by one of its
own transitive callees. Whether this is the case, is determined in a future iteration of
the fixpoint algorithm, by having the transitive callees guide the decision.

If the violating method instead has multiple callers, and all of the callers violate
the same pattern, we mark all these violations in the callers as duplicates (Rule 3, lines
30–31). As with the application of Rule 2(b), we do not immediately mark the callee’s
violation as confirmed, since it may still be a duplicate if it is actually caused by the
callee’s own transitive callees. On the other hand, if the violating method has multiple
callers, but only some contain the same violation, the callee and all of the violations in
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its own callees are marked as duplicates (Rule 4, line 32–34). For each of the violating
callers, we check their other callees: If all of the other callees have already been marked
as a duplicate, the caller’s violation becomes confirmed (lines 35–36), if any of the other
callees is confirmed to be the cause of the violation, the caller’s violation is marked as
a duplicate (lines 37–38).

Finally, if the violating method has no callers, we defer the decision to the method’s
own callees. Thus, the decision process is mostly guided by the callees of a method.
A final check if performed that marks a violating method as a confirmed violation
if none of the previous checks determine it to be otherwise, and all of the method’s
callees are determined to be duplicates. Since this algorithm implements a fixpoint
iteration, we perform a new iteration if the classification has been refined. This way,
new classifications of callers and callees can be used to classify a violation in a method.

Eventually, after the algorithm reaches a fixpoint in its classification, we end up
with a set of confirmed violations, and a set of duplicate violations. We lastly remove
all duplicate violations, and continue further, intra-procedural filtering on the set of
confirmed violations, as well as any violation we cannot reliably classify (i.e., violations
that have been classified as unknown).

4.4 Conclusion

To implement inlining and inter-procedural filtering into MUDetect, we extend its
AUG representation to obtain two new representations. The extended API usage graph
(eAUG) is similar to an AUG, but contains additional information to facilitate the
inlining process. Such information includes, among others, the order of parameters
to a call, a mapping of a method’s formal parameters to the data nodes in the eAUG,
a mapping of the instance fields of objects used in the method to the data nodes
representing these fields, and an explicit distinction between transitive and direct
order edges. The second representation is the inlined API usage graph, which is the
main representation used in the tool and is used during mining and detection. An
iAUG is similar to an eAUG, but embeds the eAUGs of the method’s callees as well.
Additionally, in an iAUG, we keep track of the method’s direct and indirect callers, as
well as its direct and transitive callees, for use in the inter-procedural violation filter.

Constructing inlined API usage graphs consists of first constructing extended API
usage graphs according to the normal graph construction phase. Then, we perform
inlining on these eAUGs, which provides us the iAUGs. This inlining involves first
discovering first-party method calls in the eAUG, and substituting the call nodes for
the eAUG of the callee. In this substitution, we copy over all nodes and edges of the
eAUG to embed them into the iAUG under construction, except for nodes representing
return statements, since inlining them may cause undesired changes in control flow
represented in the iAUG. The partial iAUG obtained after injecting the nodes and edges
of the callee is a disconnected graph containing the original iAUG under construction,
as well as the eAUG of the callee.

We thus need to instantiate edges that connect these two disconnected subgraphs.
The way these edges are instantiated is dictated by the edges connecting to and from
the original method call node in the iAUG. In essence, we remove these original edges
and instantiate them to connect to the eAUG’s subgraph, or, in other words, we relink
the edges. Each edge type that needs to be relinked needs to be handled uniquely, to
account for the semantics of the edges. For example, when an order edge is relinked
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from a method call node to the subgraph, this edge needs to be relinked both to the
source nodes of the subgraph, as well as all nodes that are reachable in the subgraph via
other order edges. This is necessary because the execution order relation is transitive.
As another example, when relinking outgoing finalisation edges from the call node,
we need to identify all nodes in the callee that may throw an exception, and relink the
edges to have these nodes as their source.

We develop six inlining strategies, which dictate which calls should and should not
be inlined. The first of these strategies performs no inlining, and is provided with the
intention of comparison to MUDetect. The other five strategies differ in how they
handle recursion, duplicated calls, and calls to methods that do not contain any direct
API usage. Our first strategy, the inlining depth cutoff strategy, simply inlines every
call it finds, but limits its exploration of the call tree to a user-supplied depth. The
second implemented strategy eliminates recursion, and is aptly named the no recursion
strategy. It thus prevents inlining a call node if the call is recursive, either directly or
indirectly. This prevents phenomena from being duplicated in the iAUG, which may
lead to overfitting during mining. Similarly, the no duplicates strategy prevents inlining
a call if the eAUG corresponding to the target method has been inlined in the iAUG
before. The order in which calls are inlined guarantees that the retained call is the
one which is reached first by the program at runtime. We additionally implement a
variation for both the no recursion and no duplicates strategy, which prevents inlining
a call if the target method contains no direct usage of a targeted API. This extension
is called the pre-emptive cutoff, since it stops inlining even though transitively called
methods may still contain API usage. However, we assume that it is unlikely for an API
usage in a caller and an API usage in an indirect callee to be related if the intermediate
callee contains no API usage. Thus, this strategy eliminates phenomena that are likely
unrelated to the API usage.

Using these inlined API usage graphs in the mining phase provides us inter-
procedural patterns. These patterns are used in the detection phase, which directly
eliminates the false positives caused by missing pattern elements that are actually
present in the callee, since the callee is embedded into the iAUG of its callers. However,
the detector may still report false positives due to partial pattern overlaps in a method
where its callers further extend this overlap to be a complete instance of the pattern.
Similarly, we run the risk of duplicate violations, as a violation present in a callee
method would be reported in its callers as well, since the callee is inlined into the
callers. To alleviate these issues, we implement an inter-procedural false positive and
duplicate violation filter, according to heuristics.

To eliminate false positives due to a callee method missing pattern elements that
are instantiated in the caller, we check all callers of the violating method. If we find that
none of the callers contain the same violation, we decide that the callee is instead part
of a larger, inter-procedural pattern instance, and remove it on the grounds of it being
a false positive. To eliminate duplicate violations, we rely on heuristics to determine
which method to blame as the cause of the violation, and prevent reporting a violation
in the other methods. We design a number of rules to determine this, based on the
insight that if a callee contains a violation, then all of its callers necessarily contain the
same violation. Thus, in essence, when any of the callee’s callers do not contain the
same violation, we assume that the other callers are to be blamed for the violation. If
all of the callee’s callers contain the same violation, we assume the callee is causing the
actual misuse, since it is unlikely to make the same mistake multiple times.

Thus, our implementation of inlining in MUDetect makes the tool able to
both mine inter-procedural patterns, as well as detect inter-procedural instances and
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violations of these patterns. To prevent reporting additional false positives due to
these inter-procedural patterns, we filter the reported violations. Because of this, our
approach should be able to effectively remove inter-procedural false positives from
the detector’s findings. To verify this, we perform empirical evaluation, which is the
subject of the next chapter.
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To evaluate the efficiency of our inlining approach and the different inlining strategies,
we run the experiments present in MUBench (Amann et al., 2017) on our tool. These
experiments measure our tool’s effectiveness at finding real API misuses in Java projects.
We additionally collect metrics on the size of the generated iAUGs, and measure the
time taken to construct iAUGs, mine patterns, and detect overlaps, in order to gain
insights on the effect that larger iAUGs have on these phases.

We perform four different experiments:

– Experiment RUB, to measure the recall upper bound, i.e. the recall our tool
achieves under perfect training and detection conditions;

– Experiment P, to measure the precision of our tool and the different inlining
strategies. Here, we take nine different Java projects, review the top-20 findings of
our approach for every inlining strategy, and count the number of true positives
found;

– Experiment R, to measure the recall of our approach and the six strategies, on
the same nine projects as experiment P. Using previously known misuses in the
MUBench dataset and any new misuses found in experiment P, we count the
number of false negatives of each strategy as misuses that have not been detected
by the tool;

– Experiment Perf, to measure the changes in AUG sizes and running time for the
different inlining strategies and different inlining depths, and to compare the cost
of inter-procedural and intra-procedural analysis in misuse detection.

We use two subsets of the dataset provided by MUBench for the first three of
our experiments. Table 5.1 summarises these datasets. The full dataset of MUBench
consists of 280 known misuses present in 67 Java projects, spanning 100 unique versions
(Table 5.1, row “MUBench”). We discuss the chosen subsets further when describing
the experimental setup of each experiment.

Table 5.2 shows the specifications of the system on which our experiments are
performed. All of our experiments are run on a MacBook Pro with an Intel Core i7
CPU, clocked at 2.6GHz, and 16GB of main memory. The experiments are run through
Docker, whose engine is assigned 4 CPU cores and 4GB of main memory. Note that
our tool is fully sequential and thus only uses on such core. We provide each run for a
single project with 2GB of Java heap space, which we consider a reasonable amount.
Although modern consumer-grade computers often feature upwards of 16GB of main
memory, our tool would not be the only process running on this computer and thus
needs to share this memory. We allot 2 hours of running time to each, after which we
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Dataset #P (#V) #M (#1st) #CUs #APIs

MUBench 67 (100) 280 (n/a) 218 n/a

Experiment RUB 31 (52) 163 (26) 162 53

Experiments P, R 9 (9) 91 (16) n/a 23

Table 5.1 – Overview of the datasets used in the experiments. The first column (Dataset)
shows the name of the dataset. The second column (#P) shows the total number of unique
projects present in the dataset, along with the number of project versions in parentheses.
The third column (#M) shows the number of previously identified misuses in the dataset.
The parenthesised numbers in this column show how many of these misuses exercise an
internal, first-party API. The fourth column (#CUs) displays the number of crafted correct
usage examples corresponding to the misuses. The last column contains the total number
of different APIs that are exercised in at least one of the misuses. We use “n/a” if the any
metric is irrelevant for our purposes.

consider the run to have timed out. All benchmarks are run in isolation: Only one
project is targeted in any single run, and only one run is performed at any one time.
Between runs, the JVM is fully restarted.

In the remainder of this chapter, we dedicate a section to each different experiment:
experiment RUB is considered in Section 5.1, experiment P in Section 5.2, experiment
R in Section 5.3, and experiment Perf in Section 5.4. In each of these sections, we
first describe the corresponding experiment’s individual setup in detail, then present
the results of the experiment and compare it to our baseline, and finally provide an
extensive discussion. Afterwards, we list the threats to validity of our experimentation
in Section 5.5, and we conclude in Section 5.6.

5.1 Recall Under Perfect Conditions

The purpose of our first experiment is to confirm that our representation of iAUGs
captures sufficient details of API usages to distinguish correct usages from misuses.
To do this, we simulate perfect training and detection conditions, which allows us to
obtain an upper bound on the recall our tool may obtain when run unsupervised under
less than perfect conditions. Thus, we can also identify cases where our tool fails to
distinguish correct usages from misuses, and derive root causes for these cases.

5.1.1 Experimental Setup

This experiment is equivalent to experiment RUB performed by Amann et al. (2019),
and we use a nearly identical dataset. However, due to relocation of the source code
repositories of three projects,1 the automated benchmarking pipeline cannot retrieve
these projects, and their misuses have therefore been excluded from the test. Thus, we
end up with a dataset containing 31 unique projects and 163 misuses, all but one of
which have a corresponding correct usage (Table 5.1, row “Experiment RUB”).

This experiment is run as follows: For each of the 162 correct usages in the dataset,

1The projects in question are iText, ArgoUML, and BattleForge
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Hardware Specifications

Model MacBookPro13,3

CPU Model Intel Core i7-6700HQ

Physical CPU cores 4

Base clock speed 2.6GHz

Max. TurboBoost 3.5GHz

RAM 16GB 2133MHz LPDDR3

Storage PCIe 3.0 SSD

Software Specifications

Docker version 18.09.2

Docker virtual cores 4

Docker engine memory 4GB

JRE version 1.8.0_171

Scala version 2.13.0

Table 5.2 – Overview of the hardware and software specifications of the system on which
the evaluations are run.

we run the detector and provide it the correct usage example to train on. We set the
minimum support to 1, resulting in the single correct usage to be fully picked up as
a pattern. This simulates perfect training conditions, where the mined patterns are
correct and exhibit the right amount of generality to distinguish misuses from correct
usages. Then, we provide the detector the source code file of the Java class of which
a method contains a misuse corresponding to the correct usage. We ask the detector
to provide us its findings, i.e. the violations of the mined patterns that it finds in the
source code, along with the context it used to detect the misuse, i.e. the missing AUG
elements. We can then obtain the recall upper bound as the percentage of misuses in
the dataset that are actually found by the detector.

The correct usages provided in the MUBench dataset, and by extension the dataset
used in this experiment, only contain a single method and thus are intra-procedural.
Therefore, running this experiment with inlining has no effect on the mined patterns.
In essence, performing inter-procedural analysis in this experiment would only affect
the detection phase, where its only purpose is to decrease the number of false positives
due to pattern instances spanning multiple methods. Since none of the misuses in the
dataset contain such usages, we decide to only consider the no inlining strategy in this
experiment. Thus, we run this evaluation only on our tool with the no inlining strategy
enabled, and on MUDetect as a baseline. The main difference between the two is
that our tool does not remove self-usages, i.e. method calls on the same instance, and
we therefore expect the recall upper bound of our approach to be slightly higher than
that of MUDetect.

To summarise, for each of the 162 misuses that have a corresponding correct usage
in the dataset, we train our tool without inlining using the single correct usage with a
minimum support of 1. We then detect misuses in the target method containing the
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Detector #Hits RUB

MUDetect 112 69.1%

No inlining 120 74.0%

Table 5.3 – Results of experiment RUB for
MUDetect and our tool with the no in-
lining strategy. The second column shows
the number of correctly reported misuses,
the third column shows the corresponding
upper bound of recall.

Root cause #Misses (%)

Representation 21 (50%)

Matching 20 (48%)

Analysis 1 (2%)

Table 5.4 – Root causes of missed API mis-
uses of our tool. The first column shows
a high-level categorisation of the cause,
the second column shows the correspond-
ing number of misuses missed due to this
cause, as well as its percentage in the total
number of misses.

misuse, and count the number of hits that our tool finds overall. Recall upper bound
is thus the percentage of these 162 misuses that our tool correctly identifies using the
perfect patterns obtained from the correct usage.

5.1.2 Results

Table 5.3 shows the results of experiment RUB on MUDetect and our approach
without inlining for the previously described dataset. We can see that our approach
successfully identifies eight of the misuses MUDetect misses, increasing the recall
upper bound by nearly 5%. This increase is mainly because we lift the limitation of
self-usage in AUGs, which allows us to encode method calls on this and instance
fields. Additionally, our tool finds all misuses found by MUDetect. This confirms
that our extended representation of AUGs captures sufficient details to distinguish
correct usages from misuses, and captures more such details than the original AUG
representation. However, MUDetect deliberately removes such self-usages as a trade-
off between precision and recall, since self-usages may lead to more false positives.
We investigate the capability of our inter-procedural analysis at removing such false
positives further in experiment P.

For each of the missed misuses, we additionally inspect the misuse and corres-
ponding correct usage to identify the main reason the misuse cannot be detected. The
results of this inspection are summarised in Table 5.4. Although our representation
correctly distinguishes correct usages from misuses, there are still 21 cases where this
representation is too abstract. Furthermore, 20 misuses are left unidentified by our tool
because of improper matching. We go into more detail on these root causes in our
discussion below.

5.1.3 Discussion

As can be seen in the results presented previously, the representation in our approach
is in some cases still too abstract to detect certain misuses. In 19 of these 21 cases, the
misuse uses an illegal literal or constants as a parameter value to a call. For example,
many such misuses use DES ciphers in a method using Java’s cryptography API, which
is considered an unsafe practice. The correct usage instead uses AES encryption. The
difference between the pattern and the misuse lies in the value given to a factory
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method, which is a string literal. Since the AUG representation captures abstract types
rather than concrete values for data, it considers both usages to be equivalent, and thus
cannot report a violation.

Capturing such values may lead to a loss of generality in our patterns. If many
legal parameter values exist, each of which is used infrequently, the resulting patterns
mined from a project may fail to capture a pattern in the method call sequences because
the parameter values are different for each pattern extension. This in turn may lead
to a lower recall value overall, where it cannot detect certain missing method calls.
One possible solution to this is to capture concrete parameter values as multisets in
pattern extensions, and later perform other types of mining, such as frequent itemset
mining, to determine which parameter values are legal. This could be extended further
to integrate association rule mining, which could identify relations between parameter
values for different calls in the same pattern. For example, if a message is encrypted
with an AES cipher, the corresponding decryption should use the same cipher. Future
work should investigate if such an approach pays off.

The remaining two cases where our representation is too abstract involve flipped
operators in conditions. Since all relational operators are abstracted to the same label,
comparisons of the form a != null and a == null are considered equivalent in our
tool. The two misuses involve such mistakes in conditions, which our tool also cannot
detect. This is a deliberate design choice, which allows us to focus on the presence or
absence of a condition, rather than its concrete implementation, since conditions can
be written in many different ways. A possible solution and an item of future work is
to incorporate more intelligent analysis in these conditions, and encoding a form of
path conditions into an AUG. These could for instance specify that a value is certainly
not null, or certainly larger than some other value, for a specific branch in the AUG,
and would result in patterns containing more semantic information that can be used in
violation detection.

Another frequently occurring root cause for unidentified misuses is insufficient
matching, leading to 20 false negatives. In eight of these cases, the misuse involves
superfluous elements, such as an extra call to a method which should only be called
once, redundant exception handling, etc. Our detection algorithm cannot detect such
misuses as it specifically searches for missing elements, rather than superfluous ele-
ments. In five cases, the pattern involves only getters, which are heuristically ignored
by the mining algorithm if they are determined to be semantically irrelevant. Thus,
these correct usages do not lead to a pattern and can therefore not be used to detect
misuses. Similarly, four cases involve a pattern of a single call, where the target misuse
uses a different method. Our tool cannot detect such misuses, since it requires that the
pattern and target share at least one method call. Two more cases solely involve method
calls on strings, which we heuristically filter out from pattern mining as strings are
determined to be too unspecific of a receiver to make up meaningful patterns, mostly
since they are used extensively in different ways in each project. A final missed case is
due to patterns abstracting over the concrete condition edge type, and the matching
considers selection and repetition edges to be equivalent. This again allows us to focus
on the presence or absence of conditions, rather than how many times a branch is
executed. The misuse in question is expected to use a loop, but uses an if-then-else
statement instead.

One final cause for an unidentified misuse is a limitation in our static analysis,
where we assume single static assignment. When this is not the case, we may fail
to detect a data relation between multiple data values that are assigned to the same
variable in different branches, leading to a false negative.
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Interestingly, although the dataset contains 26 misuses relating to first-party APIs,
our tool still identifies misuses relating to these APIs, even though it is conceptually
only able to report misuses in third-party APIs. This is because we remove all calls
to first-party methods that have not been inlined, to not confuse the miner when a
call is not inlined in one method, but is inlined elsewhere. However, we only remove
calls of which we have an AUG corresponding to the callee’s body. Since our detector
is only given one method body to train with, it cannot detect any first-party calls as
first-party, and thus does not remove such calls from the pattern. When detecting, such
missing calls can then be reported. Performing inlining would not affect this: If the
first-party call was instead inlined during pattern mining, this method’s body would
be completely present in the pattern. Thus, any missing call to this method can be
detected since its body is not be present in the target method’s iAUG.

5.2 Precision of Top-20 Findings

Our second experiment aims to assess the precision of our detector configured with
the different inlining strategies, i.e. the percentage of true positives among its findings.
Since the detectors may output a large number of findings which need to be inspected
manually, we limit ourselves to the top-20 findings of each. For this test, we select
nine projects present in MUBench as our dataset, based on previous evaluations of
MUDetect. We describe this selection in the next subsection.

5.2.1 Experimental Setup

This experiment is based on experiment P performed in the MUDetect evaluation.
The main difference is that we use a different subset of projects, which have been
selected based on previous experimentation of MUDetect. We choose a subset of
projects to decrease the number of findings we need to manually review. For this
experiment, we run seven different detectors, for which we need to review at most 20
findings for each project. A quick calculation shows that this requires us to manually
review at most 1.260 findings, whereas reviewing all top-20 findings for all 100 project
versions in the MUBench dataset would require 14.000 manual reviews. Additionally,
each run may take up to two hours for each project, thus running this experiment
fully on each project version and each detector could require nearly two months of
continuous runtime.

In essence, to obtain our set of target projects, we investigate the results of previous
evaluations presented by Amann et al. (2019) and select projects of which we expect
to see a change in behaviour when incorporating inter-procedural analysis. Thus, we
select five projects based on previously-observed inter-procedural shortcomings that
are present in the project, as evident in MUDetect’s experiments P and RUB. The
resulting projects are displayed in the first five rows of Table 5.5: We select three projects
where MUDetect incorrectly reports at least one misuse which is due to the lack
of inter-procedural analysis, and a further two projects where MUDetect fails to
detect a misuse since it involves instance field usages. We further extend our dataset
with four projects selected based on MUDetect’s assessed precision and recall, to
generalise our dataset and to compare our results in situations where inter-procedural
issues are less prevalent. The four resulting projects are displayed in the last four rows
of Table 5.5.
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Project Version Reason Description

Apache Lucene 1918 Self-usage FN Search and indexing library

Closure 319 Inter-procedural FP JavaScript compiler

ChenSun cf23b99 Inter-procedural FP Social network server

Jigsaw 205 Inter-procedural FP HTTP server

TestNG 677302c Self-usage FN Testing framework

Asterisk-Java 304421c Low number of findings Telecommunications library

Commons BCEL 24014e5 Low precision Java bytecode library

Joda-Time cc35fb2 Low recall Date and time library

VisualEE 410a80f High recall Maven plugin

Table 5.5 – Overview of the Java projects selected for experiments P and R. The project and
corresponding project version (or commit identifier) as displayed in the first two columns.
The third column describes the reason for the selection. The last column provides a brief
description of the project.

We perform this experiment as follows: For a given detector and a given project,
we provide the detector the full source code of the project as training data. Thus, the
detector mines its usage patterns unsupervised: We do not validate the correctness of
the acquired patterns. Then, we ask the detector to provide us its findings of potential
misuses, and we keep only the first 20 findings, ranked by the detector’s confidence
in its findings. For each such finding, we validate the correctness by inspecting both
the pattern, the detected violation, the source code, and the surrounding call context.
Finally, we calculate a detector’s precision as the percentage of its findings that are
actual misuses, i.e. true positives.

We perform a quite strict validation of detector findings. A finding is only counted
as a hit if it correctly points us to at least one program element that is involved in
a likely bug in the program, and the violation correctly indicates which program
elements are missing. For example, if a finding points us towards a method call which
is missing proper exception handling, but the violation tells us instead that it is missing
a part of a completely different pattern, we consider this a miss, since the detector
does not inform us of the missing exception handling. Additionally, by inspecting the
call context, we manually review that a reported misuse is not in actuality an instance
of a larger, inter-procedural pattern. For example, if a detector reports that a method
accesses a collection without checking its size, yet all of the callers of the method ensure
that the collection is large enough, we do not count such a report as a true positive.

If a detector reports a false positive, we also inspect this finding more closely to
identify the root cause of the false positive. This allows us to determine the main
shortcomings of our tool, as well as certain improvements over MUDetect. We are
mainly interested in false positives due to (a lack of) inter-procedural analysis, but
nonetheless inspect all causes.

Preliminary testing has shown that inlining can be quite expensive, and on large
projects our detector often requires more than two hours to produce results. To prevent
too many timeouts from occurring, we limit the maximum inlining depth to one level.
In other words, we only inline callee methods once, and do not perform any transitive
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inlining. Intuitively, API usages in two different methods are more likely to be related
to a larger usage if one method calls the other directly, rather than transitively through
an intermediate method. To additionally decrease the number of iAUGs that need to
be mined, we run our detectors in targeted API mode. Here, we pre-process all known
misuses of a project to determine the misused APIs, and filter out the iAUGs that
do not contain any usage of this API before the mining phase.2 Although this may
significantly decrease the number of mined patterns and, as a result, the number of
findings, we observe that MUDetect’s top-20 findings generally involve these same
APIs, and thus, both approaches can find the same misuses.

Previous experimentation also showed that the default minimum support of 10
leads to excessive overfitting of inlined callee methods. To prevent this, we set our
tool’s minimum support to 15. Although this may again decrease the number of found
patterns, inlining also adds more evidence for the miner to find, which may lead to
patterns that capture either too little detail to distinguish correct usages from misuses,
or too much detail to identify alternative but less frequent usages as correct. We return
to this issue in our discussion of the results.

As a baseline for comparisons, we run the same experiment on MUDetect. We
keep its default minimum pattern support value of 10, and do not run it in targeted
API mode. We keep this default configuration to prevent hampering the tool’s ability
to detect previously-unknown misuses.

To summarise, for each of the nine projects shown in Table 5.5, we run MUDetect
(the baseline) and six instances of our tool, one for each inlining strategy. We allow
the tools to mine patterns and detect violations unsupervised, and review each of the
top-20 findings for every combination of project and tool. We count the number of true
positives by inspecting the violation and its context in the project’s source code, and
obtain a detector’s precision as the total percentage of true positives among its total
number of reviewed findings. MUDetect is configured using its default minimum
support value, our tool is configured with a support value of 15 to prevent overfitting
to callees. Additionally, we allow our tool to filter out iAUGs that are unrelated to the
misused APIs, and perform inlining up to a maximum depth of 1, to prevent timeouts
and memory issues. We present the results of this experiment in the next subsection.

5.2.2 Results

Table 5.6 shows the results of experiment P. These results are shown graphically in
Figure 5.1. At first glance, our inter-procedural analysis does not improve precision at
all. However, note that our main objective is to remove inter-procedural false positives
from the results. Since we only consider the top-20 findings and the detectors generally
provide more than 20 results, for every inter-procedural false positive we remove, a
false positive caused by another reason takes its place. Note also that MUDetect is
able to detect misuses in first-party APIs, while our approach removes such usages.
This allows MUDetect to identify six more misuses, and ignoring these misuses,
as displayed in the second row of the table, moves its precision closer to some of the
inlining strategies present in our tool.

We can make some important observations in these results. We can see that our
strategies produce a near-identical number of true positive findings, except for the
strategy that performs no inlining, as well as the strategy that employs recursion

2Note that this is different from the pre-emptive cutoff, which prevents inlining eAUGs that do not contain
API usage. Targeted API mode performs filtering after iAUG construction, rather than during inlining.
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Detector #Findings #Hits Precision

MUDetect 127 23 18.1%

MUDetect (Third-party only) 121 17 14.0%

No inlining 104 6 5.8%

Depth Cutoff 112 15 13.4%

Recursion Elimination 120 15 12.5%

Duplicate Elimination 140 14 10.0%

Recursion Elimination w/ Pre-Emptive Cutoff 136 13 9.6%

Duplicate Elimination w/ Pre-Emptive Cutoff 136 9 6.6%

Table 5.6 – Results of experiment P for MUDetect (counted with and without detected
misuses of first-party APIs), and our detector with the six inlining strategies. The total
number of findings for each detector is listed in the second column. The third column shows
the number of true positives among these findings. The final column shows the calculated
precision.

0 20 40 60 80 100 120 140

MUDetect

No Inlining

Depth Cutoff

No Rec

No Dupe

No Rec w/ Pre-empt

No Dupe w/ Pre-empt

Number of findings

Hit (third-party API) Hit (first-party API) Miss

Figure 5.1 – Graphical representation of the results presented in Table 5.6, as stacked bar
charts showing the number of true misuses exercising third-party and first-party APIs, and
the number of false positives.
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Strategy #Hits

Closure ChenSun

Duplicate Elimination 3 6

Recursion Elimination w/ Pre-Emptive Cutoff 6 2

Duplicate Elimination w/ Pre-Emptive Cutoff 3 2

Table 5.7 – Detailed view of three strategies’ number of true positives on Closure and
ChenSun. All detectors report 20 findings in total for both projects.

elimination, duplicate elimination, and a pre-emptive cutoff. Out of all strategies, the
simple depth cutoff strategy appears to achieve the highest precision. However, it
reports the same number of true positives as the recursion elimination strategy, but the
latter reports more findings and thus, more false positives. We also observe that these
two strategies report the exact same misuses, leading us to believe that they are largely
equivalent.

Since the no inlining strategy does not inline any calls, but removes all first-party
calls, it is only able to capture the simplest of intra-procedural third-party API usage
patterns. Because of this, it cannot detect actual misuses, since it cannot distinguish
correct usages from misuses. This observation is further supported by its low number of
findings, suggesting that removing too much information from the AUG representation
leads to too unspecific patterns. However, this gains us a very important insight:
When inlining is enabled, our approach effectively mines inter-procedural third-party
API usage patterns that allow it to detect significantly more misuses than with intra-
procedural patterns.

The remaining three strategies lead to more divided situations, especially on two
projects: Closure and ChenSun. We provide a more detailed view on this situation
in Table 5.7. These results are interesting. For ChenSun, we can see that duplicate
elimination leads to a relatively high precision, whereas a pre-emptive cutoff on the
recursion elimination strategy leads to a low precision. The true positives often relate
to resources that are not closed along certain execution paths. This project uses a
helper method to close its resources, and thus the pattern is actually inter-procedural.
However, a pre-emptive cutoff fails to inline this helper method, since it does not detect
it as using the targeted API. This is because the close method, implemented by the
resources, is actually inherited from a superclass that is declared in a different API,
and AUGs resolve all calls to have the superclass as receiver to prevent issues with
polymorphism. Thus, the two strategies employing a pre-emptive cutoff fail to detect
the API usage in this helper method, and thus cannot construct a pattern which can
identify the misuses. For Closure, duplicate elimination removes too many evidence for
the miner to identify useful patterns. Thus, detection leads to many more uncommon
usages that are identified as misuses, thus leading to more false positives. When we
combine the two strategies, we remove too much relevant evidence in both cases, which
results in more false positives.

Since one of our main goals is evaluating how inter-procedural analysis prevents
false positives, we gather a list of root causes for false positives. We distinguish three
root causes for false positives relating to inter-procedural analysis:

– Usages spanning multiple methods which are detected as false positives due to
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Figure 5.2 – Frequency of inter-procedural root causes of false positives, for each detector.
MD: MUDetect; NI: No inlining strategy; IDC: Inlining depth cutoff; RE: Recursion elimin-
ation; DE: Duplicate elimination; RE+PC: Recursion elimination with pre-emptive cutoff;
DE+PC: Duplicate elimination with pre-emptive cutoff.

intra-procedural analysis;

– Self-usages that should be removed using inter-procedural analysis by investigat-
ing the method’s callers;

– Usages spanning multiple methods that cannot be detected due to the inlining
depth being too shallow.

We represent the frequency of these root causes for each of the detectors graphically
in Figure 5.2. The two detectors that do not use any inter-procedural analysis, i.e. the
original MUDetect and our tool without inlining, both suffer from false positives
caused by pattern elements being present in either transitively called methods, or
callers of a method. Interestingly, our tool reports less such false positives, which we
attribute to the less specific patterns that it finds. However, it finds more false positives
caused by self-usages, which are not present in MUDetect’s results, since it removes
such usages.

We can see that our tool reports no false positives caused by a lack of inter-
procedural analysis if run using inlining. However, it reports a lot more false positives
due to pattern elements that are present in non-inlined methods. For example, the
duplicate elimination strategies both report two misuses of a missing program element
which is actually present in a duplicate call. This, together with insights gained from
the general precision of the tool, leads us to believe that duplicate elimination has a
negative effect on our tool’s precision.

Furthermore, all of the strategies report misuses of missing program elements
which are present in methods that have not been inlined. All such mistaken reports
are present in the ChenSun project, where the helper method described earlier is not
inlined. Although a larger inlining depth will eliminate these specific false positives,
they will reappear for methods further up the call tree. Thus, we conclude that we
need to extend our inter-procedural violation filtering mechanisms, where we naively
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assumed inlining would be sufficient to detect inter-procedural instances of patterns.
Although inlining does detect such instances, they are not taken into account when
filtering false positives for callers.

Finally, we also notice that our inlining strategies still struggle with self-usages. In
all of these cases, our detector reports a misuse in the implementation of an iterator. For
example, the implementation of hasNext of a wrapped iterator may use the hasNext
method on one of its fields, without calling next. Although our tool should be able
to detect usages of this first-party hasNext method in other methods, and therefore
inline it, in practice it fails to do so, since method calls are resolved to the superclass of
the implementation. Thus, the implementation methods of a custom iterator are not
inlined into any method, and we cannot use our inter-procedural analysis of callers to
identify such false positives. However, we can see that false positives caused by such
self-usages are a lot more prevalent when we do not perform inlining, meaning that
we can in fact eliminate some of these false positives.

5.2.3 Discussion

Our experimental results identify a number of important shortcomings of our tool and
its strategies. However, we still consider this experiment to be successful, as it shows
that our approach correctly removes inter-procedural false positives and is able to mine
method boundary-agnostic inter-procedural patterns. The experiment additionally
provides us valuable insights into the root causes of the shortcomings, which allows us
to devise strategies to overcome these issues in the future. We go into more detail on
potential strategies later in this subsection, however we will first take a more detailed
look at some of our tool’s patterns and findings.

A first interesting project we take a closer look at is Joda-Time. Only four of our
evaluation subjects actually produce a result on this project, the other three fail due
to timeouts or memory issues. MUDetect produces no output, since it crashes
during its mining phase due to garbage collection overhead, caused by inefficient
memory usage. The inlining depth cutoff and recursion elimination strategies both fail
to produce results within two hours, and are therefore cancelled before their run is
complete. These are the only runs that failed throughout all of our experimentation.
We go into more detail on this subject in our performance evaluation in Section 5.4.

However, this is not the only interesting behaviour of our detector on this project.
The four other detectors that complete their run output only false positives, even
though there exist over 35 misuses in this project. However, these misuses all violate
the same pattern in the same way. This leads to the miner mistakenly picking up the
misuse as a pattern, and the detectors actually report the single correct usage of the API
as a misuse. In other words, the sheer number of misuses in this project lead to the tools
overfitting towards the misuse. A potential solution to this problem of overfitting is to
mine for usage patterns from multiple, unrelated projects. This could additionally solve
our problem of overfitting towards inlined callee methods. Although MUDetect can
be run in cross-project mode, where it mines patterns from multiple projects, we did
not evaluate our tool in such a setting, since preliminary testing showed that, due to
inlining, running the cross-project miner takes over 12 hours for a single API.

During the selection of projects for our dataset, we chose Asterisk-Java since it
has a low number of findings. In our experimentation, MUDetect reports merely
four findings, all of which are false positives. Our detector reports no findings for this
project, regardless of the inlining strategy employed. It turns out our detector only
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mines ten patterns, all of which are small, containing less than five nodes each. Thus,
the patterns are too unspecific to detect any misuses. For VisualEE, our detectors also
report zero findings, since they are only able to mine two patterns, one containing
one node, and one containing two nodes. MUDetect, on the other hand, reports
three findings, all of which are true positives. This difference can be attributed to our
larger minimum support value, but is also caused by too strict filtering in targeted
API mode. The three misuses exercise Java’s Scanner class, and thus, we only mine
for patterns in iAUGs containing usages of this class. However, Scanner implements
Java’s Iterator interface, and thus MUDetect, which does not perform target API
filtering, can additionally use AUGs with iterator usage to mine for patterns, and can
thus detect missing hasNext calls in the project.

Our inlining aids in detecting boundary-agnostic inter-procedural patterns. To show
this, consider again the ChenSun project. ChenSun has two layers: A server package,
and a database package. Many of the misuses are present in the database package,
which uses Java’s SQL API. Resources present in this API should always be closed by
calling the close method. ChenSun defines a helper method to take care of this, which,
in addition to calling this close method, performs additional exception-handling
and null-checks. Through inlining, our detectors (except for the pre-emptive cutoff
strategies, for reasons described earlier) manage to mine inter-procedural patterns,
involving creating SQL statements, executing a CRUD operation on a database, and
then closing the statement and any results. Although closing these resources is done by
the helper method, the resulting patterns make no mention of a helper method, which
allows the pattern to be used in different contexts.

Considering the Closure project again, we find three instances inter-procedural false
positives reported by MUDetect involving an iterator. Two of these examples are
illustrated in Figure 5.3. Let us first consider the example given in Figure 5.3a, which
shows an inter-procedural instance of a pattern involving retrieving an iterator from a
collection, checking if the iterator has a next element, and accessing this next element.
The method updateFunctionNode retrieves an iterator, checks for the existence of an
element in this iterator, and then passes the iterator to constructAddOrStringNode
if this is the case. This latter method then accesses the iterator without checking
whether an element exists, since its caller ensures that this is the case. MUDetect
reports two misuses for these two methods: One for updateFunctionNode, since it
uses an iterator but is missing a call to next, and one for constructAddOrStringNode,
since it calls next without checking if this is safe to do. Both of these misuses are
actually false positives. Furthermore, MUBench regards the latter of the two reported
misuses as a true positive, even though it can never be the case that the iterator is
accessed while it is empty. Our tool, with inlining enabled, reports no misuses for either
method: updateFunctionNode is never detected as a misuse, since the transitive call
to next is inlined into it, whereas constructAddOrStringNode is filtered out during
inter-procedural violation filtering, since all of its callers further extend the expected
pattern.

Figure 5.3b, on the other hand, shows an actual misuse. Here, the replaceCallNode
method retrieves an iterator and immediately passes it to constructStringExprNode,
which in turn immediately accesses the first element in this iterator. None of the
functions check to see if the iterator actually has elements. This is a true inter-procedural
misuse. Intuitively, we can determine that replaceCallNode is causing the misuse,
since the other caller ensures that the iterator has an extra element before calling
constructStringExprNode.3 MUDetect again reports both methods as a misuse,
for the same reasons as the previous example. During our experimentation, we only

3This other caller is actually constructStringExprNode itself, since it calls itself recursively.
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class ReplaceMessages {
private void updateFunctionNode() {

Iterator<CharSequence> iterator = message.parts().iterator();
Node valueNode = iterator.hasNext()

? constructAddOrStringNode(iterator, argListNode)
: Node.newString(""); }

private Node constructAddOrStringNode(Iterator<CharSequence> partsIterator,
Node argListNode) {

CharSequence part = partsIterator.next();

if (partsIterator.hasNext()) {
constructAddOrStringNode(partsIterator, argListNode); } } }

(a) Example of an inter-procedural instance of a pattern involving an iterator, simplified from an actual
usage in the Closure project. The method updateFunctionNode retrieves an iterator and ensures it has at
least one element, after which it is passed to constructAddOrStringNode. The latter rightfully assumes
this iterator has a next element, and retrieves it without performing a check. It later calls itself recursively
with the advanced iterator if there are more elements. Intra-procedurally, both methods may be regarded
as a misuse, since the former uses an iterator but appears to forget to access it, whereas the latter accesses
an iterator without first checking if there is an element. However, inter-procedurally, the pattern is fully
instantiated, and there is no misuse.

class ReplaceMessages {
private void replaceCallNode() {

return constructStringExprNode(message.parts().iterator(), objLitNode); }

private Node constructStringExprNode(Iterator<CharSequence> parts,
Node argListNode) {

CharSequence part = parts.next();

if (parts.hasNext()) {
constructStringExprNode(parts, objLitNode); } } }

(b) Example of an inter-procedural misuse of a pattern involving an iterator, simplified from an ac-
tual misuse the Closure project. The method replaceCallNode retrieves an iterator and passes it to
constructStringExprNode. The latter assumes this iterator has a next element, and retrieves it without
performing a check. It later calls itself recursively with the advanced iterator if this iterator has additional
elements to process. Intra-procedurally, both methods may be regarded as a misuse, since the former retrieves
an iterator, but appears to make no further use of it, whereas the latter accesses an iterator without first
checking if there is an element. Inter-procedurally, there exists only one misuse, since both usages are related
to each other. The misuse is likely caused by replaceCallNode, since it does not check whether the iterator
has an element before calling constructStringExprNode, which assumes that the iterator does. This theory
is further supported by constructStringExprNode’s other callee (itself), since it does perform the check,
which leads to no misuse.

Figure 5.3 – Two examples of an inter-procedural pattern instance and pattern violation,
simplified from actual source code found in Closure’s ReplaceMessages class.

count one of these two reports as a hit, since the other is an inter-procedural false
positive. Our tool reports only one misuse, present in replaceCallNode, made possible
by inter-procedural filtering and inlining. Thus, we conclude our tool can indeed filter
out inter-procedural false positives.

However, as shown in the previous subsection, our current approach leads to extra
false positives, both due to self-usages and too shallow inlining. In case of self-usages,
our tool should be able to eliminate such false positives through inter-procedural
filtering, but in practice often fails to do so because of limitations in our static type
analysis. Consider the example shown in Figure 5.4, which is slightly adapted and
heavily simplified from actual code found in the Closure project. This example shows
a class, NeighborIterator, which exhibits two cases of self-usage in the next and
hasNext methods, where it calls these same methods on an internal iterator as part of
its implementation. Although our tool should be able to eliminate false positives in
this usage, for example by inlining the custom iterator’s hasNext and next methods
in the getNeighborNodes method, it fails to do so. This is because it maps these two
calls to the superclass Iterator, and thus assumes they are part of a third-party API.
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class LinkedDirectedGraph {
public List getNeighborNodes(Node node) {

// ...
for (Iterator i = node.neighborIterator(); i.hasNext(); ) {

Node n = i.next(); } }

static class Node {
private Iterator neighborIterator() {

return new NeighborIterator(); }

private class NeighborIterator implements Iterator {
List<Edge> edgeList;

@Override
public boolean hasNext() {

return edgeList.hasNext(); }

@Override
public Node next() {

return edgeList.next().source; } } } }

Figure 5.4 – Example of a self-usage in a custom iterator, simplified from an actual example
in Closure’s LinkedDirectedGraph class. The NeighborIterator uses an internal iterator
to implement its own API, and thus does not follow the same rules as users of this iterator
should follow. Without proper inter-procedural checks, the usages in the iterator’s methods
can be reported as a misuse, since next calls another next without calling hasNext. Inter-
procedural checks can however identify that when this internal iterator’s next method is
called, the corresponding hasNext method is also called through the other implemented
method. This can for example be seen in the getNeighborNodes method.

class SocialNetworkBoards {
public static String viewBoards(String username) {

String msg = SocialNetworkDatabaseBoards.getBoardList(connection, username); }}

class SocialNetworkDatabaseBoards {
public static String getBoardList(Connection connection, String username) {

Statement getBoardsStmt = null;
try { getBoardsStmt = connection.createStatement(); }
catch (SQLException e) { /* ... */ }
finally { DBManager.closeStatement(getBoardsStmt); } } }

class DBManager {
public static void closeStatement(Statement stmt) {

if (stmt != null) {
try { stmt.close() }
catch (SQLException e) { /* ... */ } } } }

Figure 5.5 – Example of a highly nested pattern instance, where a SQL statement is created
and closed through a helper method. This example is based on actual code found in the
ChenSun project. The SocialNetworkBoards class is part of the server package, and contains
a method which is used to view a list of bulletin boards. The board list is retrieved from the
database through the getBoardList method of the SocialNetworkDatabaseBoards class,
which resides in the database package. This method opens a SQL statement, performs a
query with it (not shown), and ensures the statement is closed through a helper method
closeStatement, present in the DBManager class. All of the declared methods are first-party.

A potential solution would be to adopt more advanced static analysis that can map
the usages to NeighborIterator instead, by observing data flow relations between
getNeighborNodes and neighborIterator, even though the statically declared types
are Iterator.

The other frequent cause of inter-procedural false positives in our tool is caused by
too shallow inlining depths. To illustrate, consider the example shown in Figure 5.5,
which is derived from actual source code found in the ChenSun project. This example
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contains three methods: SocialNetworkBoards.viewBoards is part of the server-side
component of this project, whereas SocialNetworkDatabaseBoards.getBoardList
and DBManager.closeStatement are part of the database layer. The closeStatement
method is a helper method that performs various exception handling and condi-
tion checks to ensure that an SQL statement is always closed after a function re-
turns. Consider we have a pattern that involves first creating a statement through
Connection.createStatement, and finally closing this statement via Statement.close
in a finally-block of a try-catch-finally construct. When constructing an iAUG for
getBoardList, our detector inlines the closeStatement helper method and thus
the close call is present in the iAUG. However, when constructing an iAUG for
viewBoards, only getBoardList is inlined, whereas the helper method is skipped and
the call is removed from the AUG since the inlining would exceed the maximum depth
of 1. Thus, although our detector reports no misuse in getBoardList, it does report a
misuse in viewBoards, since its iAUG indicates that it creates a statement, but never
closes it.

Although increasing the maximum inlining depth would prevent this false positive
from occurring, since the call to close would then be inlined, this is not a reliable
solution. If there were instead another method, e.g. a HTTP request handler that
delegates requests to specific methods, and this method calls viewBoards, then at an
inlining depth of 2, the helper method would still not be inlined and would again lead
to a false positive. Such a naive approach would only work if we allow inlining up to
infinite depths, which is infeasible. A potential solution would be to instead perform
inlining dynamically while detecting violations. This way, when we detect a missing
graph element, we could attempt to further inline a method call and check if this callee
contains the missing element. Another similar option would be to perform such checks
during violation filtering. Our current filter only removes false positives of a callee if
all of its callers extend the violated pattern to completion. This could be adjusted so
that this check works both ways, allowing it to eliminate false positives in callers if one
of its callees further extend the violated pattern.

Although these root causes for false positives provide us key insights into the
shortcomings of our approach, there is one more root cause which is responsible for
over 65% of the false positives in each and every one of the detectors: Uncommon
usages. If there are too few correct usage examples for the miner to pick up on, it cannot
create patterns that correctly distinguish misuses from correct usages. Additionally, if a
pattern is overrepresented in a project, alternative but correct usages involving the same
API elements may be flagged as violations of the pattern. Although cross-project mining
aids in alleviating these issues, we strongly believe this is insufficient. To provide an
example, consider the retrieval of an element from a Java collection. Intuitively, we
know that we should always check that an element is present in a collection before
attempting to retrieve it, and failing to do so may lead to uncaught exceptions and
crashes. This is a source of misuses which we often observe in the dataset. However,
there are many ways one can perform such checks, for instance by comparing the result
of a call to the size method to an integer, calling isEmpty on the collection, or calling
hasNext on an iterator. We observe from our assessment of false positives that all of the
evaluated detectors struggle with these distinct alternatives. Often, instead of calling
hasNext on an iterator as expected by the pattern, the programmer instead manually
calls the size method. These alternative usages are too infrequent to be picked up as a
pattern, and thus the detector mistakenly reports it as an API misuse.

However, semantically, all three of these usages may be equivalent. Rather than
mining from more and more sources to find new and alternative ways to use an API
correctly, we instead believe that it is more important to abstract away from how such
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preconditions and usages are actually implemented. This would allow the usage model
to focus on the semantics of program code, rather than the actual implementation. For
example, it may represent that a certain call on a collection should only take place when
the collection is not empty, regardless of how such a condition is actually implemented.
However, capturing such semantic information is very much a non-trivial task.

On a final note, during this experiment, we identified eight previously unknown
misuses. Two of these misuses are identified by MUDetect: In Jigsaw, it identifies
a situation where a method may be called on a variable that can potentially be null,
and in VisualEE, it identifies a case where a Java Scanner is queried for a next token
without checking if there is such a token. The other six findings are identified by our
tool, using one of the inlining strategies. In ChenSun, we identify two additional cases
where a database resource may not be closed along exceptional paths. In Closure, one
finding reports a missing emptiness check before calling peek and pop on a collection.
Another finding in this same project involves a pattern where a call to size on a
collection controls a branch that contains a call to iterator on this same collection.
Our tool reported that two such calls are present, that the former indeed controls a
branch containing the latter, but that the calls have different collections as receivers.
Inspecting this further, we discovered that this is an actual bug in the program, where
two nearly identical pieces of code were copied to iterate over two different collections
in the same method, but the variable name for the iteration had not been changed
correctly. The fifth new misuse our tool detects is a case where a File instance may be
initialised with null in the Jigsaw project, which would lead to a null pointer exception.
The final new misuse detected by our tool is present in the Lucene project, where the
next element of an iterator is accessed without first checking if there is such an element.
We use these eight newly identified misuses in our next experiment.

To summarise this discussion, we identify that our tool correctly removes inter-
procedural false positives, but this leads to new false positives due to self-usages
in methods and too shallow inlining depths. We theorise that more advanced static
analysis could partially help in eliminating the former, whereas the latter requires
more advanced filtering or detection mechanisms. However, the most prevalent cause
of false positives still is uncommon usages. This could potentially be fixed by mining
for usage patterns across multiple independent projects, but usage models should
consider more the semantics of the program, rather than the actual implementation.
Nonetheless, our detector manages to find six new misuses present in four projects
thanks to inter-procedural mining and removal of inter-procedural false positives.

5.3 Recall Under Realistic Conditions

Our previous experiment provides us insights into the number of false positives our
tool reports in real Java projects. Another important metric is the number of false
negatives, i.e. the real misuses that our tool fails to find. To measure this, we let
our evaluation subjects run unsupervised on the same nine projects of the previous
experiment. We then search its results for specific misuses that are known to be present
in the project, based on the MUBench dataset and the new misuses found in the
previous experiment. We count how many of these misuses each test subject finds, and
determine a detector’s recall as the percentage of expected misuses that are correctly
reported.
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5.3.1 Experimental Setup

In this experiment, we reuse the dataset presented in the previous section. We addi-
tionally review all of the 91 known misuses in MUBench for these projects, and find
that five of these are actually false positives, four of which are due to a lack of inter-
procedural analysis when creating the dataset. All four of the inter-procedural misuses
involve a missing item existence check when using an iterator, but looking at the call
context of the misuse, we see that the collections in question are always guaranteed to
be non-empty, either by the caller of the method or a getter used in the method’s body.
The last false positive suggests that a stack may be popped without an element ever
being pushed, however, iteration order shows that an element always exists. Thus, we
do not count these false positives towards the overall recall of a detector. However, we
add the eight newly-identified misuses from the previous section to our set of expected
misuses. In the end, this provides us 94 expected misuses for our evaluation subjects to
find, 76 of which exercise a third-party API.

We run our evaluation subjects identically to the previous experiment, and keep the
parameters. To recapitulate, we use MUDetect as our baseline, which is allowed to
mine with a minimum support of 10. We run our detector with each of the six inlining
strategies individually in targeted API mode, and set the minimum support to 15. We
then scan each detector’s results in search of the expected true misuses. In order not
to manually review potentially thousands of findings, we perform a targeted search
based on the name of the method in which the misuse takes place, as well as the line
number of the program element involving the misuse. We review the matching findings
to ensure that it points us to the correct misuse, in a similar manner as the previous
experiment, and if it does, we count it as a hit. We then get the recall of a detector as
the percentage of expected misuses that it actually reports. We present our results in
the next subsection.

5.3.2 Results

We present the results of this experiment in Table 5.8, and graphically in Figure 5.6.
We can immediately see that our approach leads to a lower recall value than the
baseline. This is to be expected, since a significant portion of the expected misuses
involve a first-party API, which our tool cannot detect by design. For fairness, we re-
evaluate this experiment and only count the expected misuses that exercise third-party
APIs. The results of this is given between parentheses in the table, and in blue in the
figure. We can see here that all of our inlining strategies that actually perform inlining
achieve similar recall values, which are also comparable to the baseline’s. The no
inlining strategy significantly falls short, since it removes too much evidence while not
performing inlining, and can thus not mine many meaningful patterns. The recursion
elimination strategy, both with and without a pre-emptive cutoff, achieves the highest
recall out of all our strategies, which is actually equal to the recall of MUDetect on
this experiment.

We can also see that adding a pre-emptive cutoff leads to no changes to the recall of
a detector: Both the recursion elimination strategy as well as the duplicate elimination
strategy retain the same recall value if a pre-emptive cutoff is added. However, this
does not mean the two versions mine equivalent patterns, as we have seen in the
results of our previous experiment that a pre-emptive cutoff leads to a decrease in
precision. We notice that a pre-emptive cutoff leads to more specific patterns because
of the removal of some unrelated elements that would otherwise be inlined. Although
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Detector #Hits (#Third-party) Recall (Third-party)

MUDetect 26 (18) 27.7% (23.7%)

No inlining 10 (10) 10.6% (13.2%)

Depth Cutoff 17 (17) 18.1% (22.4%)

Recursion Elim. 18 (18) 19.1% (23.7%)

Duplicate Elim. 16 (16) 17.0% (21.0%)

Recursion Elim. w/ Pre-Emptive Cutoff 18 (18) 19.1% (23.7%)

Duplicate Elim. w/ Pre-Emptive Cutoff 16 (16) 17.0% (21.0%)

Table 5.8 – Results of experiment R for MUDetect and our detector with the six inlining
strategies. The second column displays the total number of hits found by the detector,
whereas the third column gives the corresponding recall. The parenthesised numbers
provide these metrics where misuses of first-party APIs are not counted.
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Figure 5.6 – Recall for each detector. MD: MUDetect; NI: No inlining strategy; IDC: Inlining
depth cutoff; RE: Recursion elimination; DE: Duplicate elimination; RE+PC: Recursion
elimination with pre-emptive cutoff; DE+PC: Duplicate elimination with pre-emptive cutoff.

such patterns focus a lot more on the API usage itself, they lead to more high-ranked
false positives due to uncommon but correct usages.

MUDetect in total identifies eleven misuses which our tool fails to find. Eight
of these misuses exercise a first-party API, the remaining three are all present in one
project, where our tool fails to mine any meaningful pattern. However, since we achieve
similar recall, this means that our tool finds other misuses which MUDetect fails to
find. This varies for the different strategies, but across all strategies, our tool detects 10
true misuses that are missed by MUDetect. We attribute this to our inter-procedural
boundary-agnostic mining, which can find patterns even when such patterns are not
readily apparent from a single method.
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5.3.3 Discussion

There are two main observations that draw our attention in this experiment. First, it
is obvious that our approach struggles heavily with usages of first-party APIs, and
second, we miss a significant number of misuses when we cannot mine a meaningful
usage pattern for the correct usage of the API. We explore both of these shortcomings
in this discussion.

The inability of our detector to find patterns in first-party API usages can be
partially blamed on our targeted API filter, which filters out any iAUGs that have no
usage of a targeted API before the graphs are fed to the miner. Since iAUGs contain
no leftover first-party calls, the filter eliminates all iAUGs that solely make use of
the targeted first-party API, and the miner can therefore not find any patterns in
their usage. However, changing this filter will introduce other problems. The main
shortcoming is that iAUGs capture no usage of first-party APIs, due to the inlining and
method boundary erasure, which instead captures implementation details of the API.
This is a deliberate design decision. Capturing the implementation of the first-party
API allows us to detect potential misuses of underlying third-party APIs that cross the
boundary between the first-party client code and the first-party API. For example, a
project may define an API which it uses itself, and communicates with the API through
Java collections. Erasing this first-party API boundary allows us to detect misuses of
the underlying collections between the client and the API. Essentially, there are two
sides to consider in terms of first-party API usage. On the one hand, we want to detect
misuses of other, underlying APIs, as illustrated above. On the other hand, we want to
detect misuses of the first-party API itself. Our approach focuses solely on the former,
whereas MUDetect focuses mostly on the latter.

Combining these two approaches of handling first-party APIs is non-trivial. One
potential solution is to introduce a dual representation, one which captures both usages
of underlying APIs that cross boundaries between client code and first-party APIs,
as well as usages of the first-party API itself. This could be done by re-introducing
method boundaries into our representation. However, this should only be done in a
controlled fashion: Introducing method boundaries to usages of normal helper methods
may significantly decrease the generality of the patterns. Thus, a potential alternative
approach is to inline all first-party calls, and erase the method boundaries for all such
calls except when the call forms part of a first-party API. Unfortunately, it is unclear
how such first-party APIs can be reliably identified, other than asking the user of
our tool to specify the project’s APIs manually. Such an approach would significantly
hinder the applicability of our approach in a fully automated context.

The second shortcoming that leads to many missed misuses is the inability of our
miner to infer patterns from API usage if the usages are too infrequent. This leads us
to two conclusions. First, specifying a hard, absolute minimum support threshold is
insufficient to capture rare usages. For example, in the VisualEE project, our miner is
only given 17 iAUGs to detect patterns from, while the minimum support value is 15.
In the end, it only mines two patterns from these iAUGs, one of which contains only a
single node, while the other contains two nodes and one edge between them. Using a
relative minimum support threshold may alleviate this problem and allow us to mine
less frequent patterns. There are many ways we could specify such relative thresholds,
and three options come to mind. First, we could state that a usage can be considered a
pattern if it is present in more than a certain percentage of the usages that exercise a
certain set of API methods. Second, a relative threshold could state instead that a usage
must be present in at least a certain fraction of the total number of methods. Third, we
could use a relative threshold when extending patterns, and only extend a candidate
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pattern if at least a certain percentage of its supporting fragments can be extended in
an identical way. Future work should investigate the effect of such relative thresholds.

We further notice that MUDetect can mine reasonable patterns in the VisualEE
project, and actually detects the expected misuses too. Therefore, our second conclusion
is that our minimum support value is too high to mine some important patterns. We
increased the minimum support value of our tool to prevent it from overfitting towards
callee methods that are inlined into callers. To illustrate, assume a project contains a
method that is called independently 10 times from other methods. Thus, the method
will be inlined independently 10 times as well, and for a minimum support of 10,
the miner would pick up the whole callee as a pattern, leading to overfitting. Such
overfitting in turn leads to lower precision, and preliminary testing showed that with
a minimum support of 10, our detector rarely reported a true positive in its top-20
findings. We thus increased our minimum support to 15, which alleviates much of
this overfitting and increased precision. However, as we see in this experiment, it also
means that some patterns cannot be detected at all. It is unclear how we can prevent
such overfitting in an intra-project setting, since we still want to capture the relevant
API usage in the callee if it is inlined multiple times independently. One option would
be to slice the iAUG and removing irrelevant nodes and edges, but we run the risk
of removing elements that are actually part of a meaningful pattern. A better option
would be to perform pattern mining in a cross-project setting, where it is less likely
that similar usages in multiple different projects contain the same irrelevant usage.
However, as previously discussed, inlining leads to larger graphs, and in a cross-project
setting, we would need to inline many more graphs. This is expensive, and makes
cross-project mining currently infeasible.

Thus, to recapitulate, our main observations from this experiment are that our
approach achieves a recall similar to our baseline when only considering misuses
of third-party APIs, except when no inlining is performed. If we include misuses of
first-party APIs, our approach performs poorly, since it cannot capture first-party API
usages at all. Extending our iAUG representation to capture such usages would require
re-introducing method boundaries to first-party API calls, which requires us to reliably
distinguish first-party APIs from helper methods, which is difficult to do automatically.
We further observe that our miner sporadically fails to infer meaningful patterns, which
is due to our increased minimum pattern support. However, decreasing this support
would lead to lower precision because of patterns overfitting towards specific usages,
especially in inlined methods. We theorise that such overfitting could be decreased by
either slicing irrelevant usages from iAUGs, which can mistakenly remove relevant
usages in the pattern, or mining patterns from multiple independent projects, which is
currently too expensive due to the increased size of iAUGs after inlining.

5.4 Performance Evaluation

Our final experiment aims to determine the cost of performing inter-procedural analysis.
We investigate both the ability of our inlining strategies to decrease the size of iAUGs,
as well as the increase in cost when inlining at deeper levels. In essence, we measure
this by running our detector at varying levels of inlining for different strategies, and
measure the size of the constructed iAUGs, as well as the time spent mining the
graphs and detecting violations. We then compare the obtained measurements to our
strategy that does not perform inlining, and investigate the results. We describe this
experimental setup in the next subsection, present the results in Section 5.4.2, and
discuss the implications of our results in Section 5.4.3.
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5.4.1 Experimental Setup

In this experiment, we run three of our inlining strategies at maximum inlining depths
1 and 2, and record various metrics during runtime: We measure the size of the
constructed iAUGs, both in number of nodes and number of edges, as well as the
time spent constructing iAUGs, mining them, and detecting violations. We choose the
inlining depth cutoff strategy, the recursion elimination strategy and the duplicate
elimination strategy as our main evaluation subjects. We omit the strategies with
a pre-emptive cutoff from this experiment, since these can only be run in targeted
API mode, and targeting a specific API leads to many iAUGs being removed before
mining, which makes it difficult to compare the obtained runtime measurements. We
additionally perform this experiment on our detector without inlining, and the original
MUDetect tool. We do not measure graph sizes for MUDetect, since it does not
record such information, and we choose not to adapt the tool to include it to avoid
hampering its capabilities.

We use our detector without inlining as the baseline for comparisons with the
remainder of our selected strategies. The reason is that it does record graph size
information, and we can thus compare inlined graph sizes to non-inlined graph sizes.
Another reason is that in order to make iAUG mining feasible in terms of memory
consumption, we performed some optimisations and adjustments that are not present in
MUDetect, which were briefly described in Chapter 4. Because of these optimisations,
comparing our inlining to MUDetect may produce biased results. However, we do
use the runtime measurements obtained from MUDetect to compare to our detector
without inlining enabled.

Contrary to the previous experiments, we use a larger timeout value before we
cancel a detector’s run. In the previous experiments, we use a timeout of two hours,
whereas we use an eight-hour timeout here. The reason is that we want to gain better
insights into the running time at larger inlining depths, which often take more than
two hours to run. Setting too low of a timeout value would lead to too many runs
being cancelled before we can get interesting measurements.

Additionally, we only run these experiments on one project, Closure version 319.
This is a fairly large project, consisting of over 6000 defined methods and thus, over
6000 constructed iAUGs. We choose to limit ourselves to one project since the time
spent mining and detecting depends on many different variables, including the number
of mined patterns and their support. Since these are variables we cannot control, we
cannot make fair comparisons between different projects.

5.4.2 Results

Let us first look at the time measurements for inlining up to a depth of one level.
Figure 5.7 shows an overview of our results as bar charts. In Figure 5.7a, we display the
total running time of each detector. We can clearly see from this figure that MUDetect
performs its complete run quite a lot faster than our approach. We can also see already
that the simple inlining depth cutoff is the slowest approach out of all strategies,
whereas the duplicate elimination strategy manages to achieve a running time similar
to the strategy that performs no inlining at all.

To further investigate these differences in runtime, we can inspect the running times
of each individual phase. The first phase our tool performs is constructing the eAUGs
and inlining them to iAUGs. The time taken to perform these steps by each detector
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(a) Bar chart showing the total time taken to run
a detector. The time is shown in minutes on the x-
axis, whereas the detector (or strategy) is shown
on the y-axis.
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(b) Bar chart showing the time taken to construct
the graph representation by each detector. The
time is shown in seconds on the x-axis, whereas
the detector (or strategy) is shown on the y-axis.
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(c) Bar chart showing the time taken to mine
patterns by each detector. The time is shown in
seconds on the x-axis, whereas the detector (or
strategy) is shown on the y-axis.
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(d) Bar chart showing the time taken to detect
violations by each detector. The time is shown in
seconds on the x-axis, whereas the detector (or
strategy) is shown on the y-axis.

Figure 5.7 – Results of runtime measurements of MUDetect and our tool with the no
inlining strategy, the inlining depth cutoff strategy, the recursion elimination strategy and
the duplicate elimination strategy. The latter three are configured to inline up to a maximum
depth of one level, as annotated by d = 1.

is shown in Figure 5.7b. We can see here that the inlining process adds significant
overhead to the construction of the graph representation. This is to be expected, since
inlining needs to traverse entire graphs and copy over potentially many nodes and
edges. Additionally, it performs analyses to determine data dependencies between
callers and callees to properly relink some edge types. Interestingly, when our approach
does not perform inlining, it still spends a lot of time constructing graphs. Although
we expect it to instead achieve runtimes similar to MUDetect, because of the design
of our inlining algorithm, it still traverses entire graphs while not inlining any method
call. We theorise that this redundant traversal is causing the increase in construction
time.

Although graph construction is significantly outperformed by MUDetect, the
difference in time taken to mine patterns is smaller, although still significant. As we
can see in Figure 5.7c, because of our data structure optimisations, our approach out-
performs MUDetect in the mining phase when the no inlining strategy is selected.
These memory optimisations are vital for the feasibility of the mining, since mining
generates a lot of pattern extensions, which may quickly exhaust memory availability,
especially when inlining is applied. Although we focused on memory optimisations,
these translate to runtime performance improvements since memory allocations are
expensive and immutable data structures often have beneficial performance charac-
teristics. When we do perform inlining on the input graphs, mining becomes slower,
which is to be expected since the graphs may become a lot bigger. However, from a
higher perspective, we notice that these differences are not as significant as we expected,
at least on an inlining depth of one. Mining takes less than half a minute in all cases,
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(a) The total time taken to run the detectors at
differing depths. The time is shown in minutes
on the x-axis, the detector on the y-axis.
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(b) The time taken to construct the graph repres-
entation at differing depths. The time is shown in
minutes on the x-axis, the detector on the y-axis.
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(c) The time taken to mine patterns at differing
depths. The time is shown in minutes on the
x-axis, the detector on the y-axis.
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(d) The time taken to detect violations of patterns
at differing depths. The time is shown in minutes
on the x-axis, the detector on the y-axis.

Figure 5.8 – Bar charts showing the running time measurements for the recursion elimina-
tion strategy and duplicate elimination strategy at an inlining depth of 2 (d = 2), compared
against the same strategy at an inlining depth of 1 (d = 1). Results for the inlining depth
cutoff strategy are omitted, since it did not finish within 8 hours.

which is still quite fast, relative to the time spent constructing and detecting violations.
This is because the mining algorithm uses a-priori pruning techniques, thus it can ef-
fectively eliminate many useless candidate extensions. One final interesting observation
we can make from these mining times is that the duplicate elimination strategy spends
significantly less time mining than the other two strategies that perform inlining. This
can be attributed to its ability to eliminate a lot of calls that would otherwise be inlined,
leading to less duplicate phenomena in the graphs that would be picked up by the
miner. This also means that certain candidate extensions become less frequent, thus
more pruning can be performed by the a-priori mining algorithm, and less candidate
extensions need to be checked for isomorphism.

Although mining is still reasonably fast, a lot more time is spent on detecting mis-
uses, as shown in Figure 5.7d. We can immediately see that some of our optimisations
carry over to this phase, as the no inlining strategy significantly outperforms MUDe -
tect in detection time. However, since this strategy also picks up on less patterns
due to the removal of first-party calls, there are naturally less potential misuses to
detect, and thus less work to perform during detection. Even when inlining is applied,
our approach still takes less time to detect violations than MUDetect. However, it
takes significantly longer than when no inlining is performed, because the graphs and
patterns are larger. Again, the duplicate elimination strategy is the faster of the three
strategies, while the simple inlining depth cutoff strategy is slowest, which is due to
the varying degrees of elimination they perform.

Detecting misuses inter-procedurally through inlining at a depth of one level
in a call tree is feasible, although significantly slower than performing detection
intra-procedurally. The situation changes drastically when we increase our inlining
depth only slightly. This is shown in the bar charts in Figure 5.8, which displays the
runtime measurements obtained for the recursion elimination and duplicate elimination
strategies if graphs are inlined up to a depth of two. We additionally display the
measurements for a depth of one again, as a means of comparison. The figure does not
include measurements for the inlining depth cutoff strategy, since we do not have any:
This strategy did not produce any results after 8 hours.
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(a) Box plots depicting the number of nodes in the constructed iAUGs for each
inlining strategy evaluated. Outliers are omitted for size considerations.
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(b) Box plots depicting node sizes the 50 largest graphs for each inlining strategy
evaluated.

Figure 5.9 – Box plots showing summaries of the graph vertex set size measurements for
each inlining strategy in our detector.

We can immediately see that all phases take significantly longer for a larger depth. In
the case of constructing graphs, the situation is less severe for the duplicate elimination
strategy, since it can prevent even more duplicated inlining at the second level, and
thus construction does not take a lot longer, whereas the recursion elimination strategy
struggles heavily because it cannot eliminate as much calls. While mining, this extra
elimination pays off for the duplicate elimination strategy, which is a lot faster than
the recursion elimination strategy. However, both strategies are significantly slower
when graphs are inlined up to two depths, since graphs can become a lot bigger and
thus, there are many more paths along which a candidate pattern can be extended.
This leads to search space explosion, and more graph isomorphisms to check.

When it comes to detection of violated patterns, both strategies suffer heavily
from the increase in graph sizes. Since violation detection also continuously extends
candidate graph overlaps, it deals with the same search space explosion as mining
does. However, mining can prune candidates that will not lead to a pattern at every
step of its exploration, while detection cannot. This leads to the detection algorithm
having to explore a large portion of this search space, which explains its enormous
increase in running time for both strategies.
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Thus, from the results provided so far, we can see that graph construction, pattern
mining, and violation detection tend to take increasingly longer time as graphs grow
in size. To confirm these findings, we additionally record the number of nodes present
in the constructed iAUGs. The results are displayed in Figure 5.9. Figure 5.9a depicts
box plots that describe the node set sizes of all graphs for a detector. We omit outliers
from these graphic because of size considerations. We note that graphs clearly grow for
different inlining depths, as can be seen by the wider box plots for each inlining depth.
However, the median is low, suggesting that half of the graphs are in reality fairly small.
Indeed, there are a lot of methods which see little growth, or even no growth at all,
when inlining. This happens when methods call very little other first-party methods,
such as getters and other simple methods. We also observe that the median increases
only slightly when the inlining depth increases from 1 to 2. This can again be attributed
getters and other simple methods: If we inline a getter method that calls no other
methods at depth 1, this cannot lead to any further inlining at depth 2, since there are
no transitive callees.

Thus, we can see that most graphs do grow as the inlining deepens, but the growth
shown in Figure 5.9a does not fully explain the immense increase in running time we
see in Figure 5.8. Thus, we turn to look at the outliers, which we previously omitted
from our graphical representation. Figure 5.9b shows box plots for the 50 largest
graphs for each detector strategy. We can see here that a larger inlining depth leads to
more and larger outliers. For example, the recursion elimination strategy at depth 2
constructs multiple iAUGs that contain over 5000 nodes. Since the outliers are already
quite large graphs at lower inlining, growing them even further leads to graphs of
relatively enormous size which take a lot longer to process. Note that the outliers in
the duplicate elimination strategy all contain less than 2000 nodes, for both inlining
depths, because this strategy can eliminate a lot of inlining.

To summarise, our experimental results show us that, as expected, graph construc-
tion, pattern mining, and violation detection take longer to run as graphs get larger.
We also find that the inlining strategies which we designed to reduce the number of
repeated inlinings, help decrease the size of the graphs and thus attain more favour-
able running times. We show that running our tool at larger inlining depths quickly
becomes infeasible, requiring over three hours to run without duplicate elimination
at a two-level depth, which is due to large growths in the size of graphs and the
combinatorial explosion encountered during mining and violation detection.

5.4.3 Discussion

The results of our experiment show that performing inlining to greater depths leads to
a large increase in running time of our tool. Thus, it would be beneficial to devise ways
to speed up the different phases. Improving the running time of graph construction
could allow us to mine patterns in a cross-project setting, which is currently too
expensive. Indeed, currently inlining up to a depth of one takes over five minutes for a
single project, and thus, if we are to mine patterns from 20 different projects, graph
construction alone could take nearly two hours. Although at an inlining depth of one
level, the mining is still relatively efficient, at larger inlining depths it gets a lot slower,
so further performance improvements are necessary. Similarly, and more importantly,
the detection phase should be subject to optimisations as well, since it equally suffers
from search space explosion, yet cannot prune as efficiently as the mining can.

We list a number of potential strategies at tackling these issues below. However,
future work should first focus on determining whether inlining at larger depths pays
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off in the quality of the mined patterns. Intuitively, it is more likely to have API
usages continue in a callee than in a callee of a callee, i.e. a transitive callee. Thus, we
are unsure whether our approach would benefit from inlining up to larger depths.
Nonetheless, even at a lower depth, some phases can still benefit from optimisations
and improvements.

In terms of constructing and inlining AUGs, it is worth noting that our current
implementation is highly unoptimised and there are likely multiple tweaks that could
be made to improve its performance. A perhaps invasive improvement would be to
incorporate the inlining into the eAUG construction phase. Currently, these are split
up into two phases, in part because this facilitates the reuse of eAUGs if a method
is inlined into different iAUGs, without having to regenerate an eAUG every time.
However, proper edge relinking could be made a lot more efficient if it was performed
immediately when constructing the graph, rather than as an ad-hoc solution. The
reasoning here is that to relink edges, we often need to identify data dependencies,
sub-type relations, and other information that is already computed during construction,
but discarded before inlining takes place. Some of this information is fairly expensive
to compute, such as the data dependencies, so preventing such duplicate computations
may pay off. One strategy where a lot of redundant work takes place is the no inlining
strategy, which needlessly traverses graphs while it does not inline anything. This is
trivial to optimise, but is not implemented since our tool was never intended to not
perform inlining, and the strategy solely exists for comparison to MUDetect.

Mining is still reasonably efficient, mostly thanks to the effectiveness of a-priori
subgraph mining algorithms at pruning the search space, the use of Exas feature
vectors to check for graph isomorphism, and our existing optimisations to the latter. If
mining were to become a problem, such as on large inlining depths or in a cross-project
setting, an option could be to first cluster graphs according to the API methods used,
and perform mining on each of the clusters rather than the whole set of AUGs. This
technique was applied in B igGroum (Mover et al., 2018) to effectively mine patterns
in 500 Android applications simultaneously. They further use program slicing to reduce
the size of the graphs that are fed to the miner, which, as we see from our experiment,
has an effect on the mining time. Thus, such techniques may be beneficial to reduce
the time spent mining for patterns.

However, the time spent detecting violations of patterns much outweighs the time
spent mining for them. This is unfortunate, since it may be interesting to apply these
detections in a “mine once, detect many” situation. For example, mining could be
applied once for a large number of projects, producing a number of general, high-
quality patterns. These patterns could then be saved in a database, and later used to
detect violations many times in either one or multiple projects, through e.g. continuous
integration services. However, if the time spent detecting is too long, such automation
approaches would be unattractive. One strategy to decrease the running time of
detection would be to perform detection in intra-procedural graphs, which is fast, and
either perform inlining dynamically, or “puzzle” the different intra-procedural overlaps
back into a larger, inter-procedural overlap. The former could search for overlaps in
an eAUG and if it expects a certain graph element, but finds a first-party call instead,
perform a dynamic inlining to check if the callee contains the missing element. The latter
would simply mark this missing element as missing, and after all overlap detection
has been performed, a process similar to inlining could be performed to check that
the partial overlap of a callee with a pattern completes the partial overlap of the caller
with this pattern, after which the two overlaps could be merged together. As another
option, note that GrouM iner does not perform a separate violation detection step,
and instead considers all inextensible candidate patterns as violations if there exists a
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larger pattern of which the violation is a strict subpattern. Thus, they perform violation
detection directly during mining, and we could use similar techniques to bypass the
slowness of detection completely. However, this would make it impossible to apply our
tool in a “mine once, detect many” scenario, since detection would necessitate mining
at all times. Additionally, this would introduce extra challenges to cross-project mining,
and recall that GrouM iner performed quite poorly on the MUBench evaluation,
which may in part be due to lack of a separate detection phase.

5.5 Threats To Validity

In this section, we list the threats to internal and external validity of our experimenta-
tion.

Internal Validity We did not fine tune the parameters of MUDetect in our baseline,
such as its minimum pattern support and its ranking strategy, and instead used the
configuration that is presented as optimal by Amann et al. (2019). Similarly, we did
not fine tune the minimum pattern support value in our detector for each project, and
instead used a hard threshold obtained from preliminary testing on different projects.
It may be that a different minimum support value leads to better or worse results for
a specific evaluation subject or a specific project. Future work should investigate the
effects of a relative minimum support value on the precision and recall of our detector.

All detector findings were reviewed manually by the same researcher. Thus, this
may introduce researcher bias into the classification of findings into hits or misses. To
prevent this, we focus only on findings that constitute an actual bug in the program,
and neglect code smells and anti-patterns, which are highly subjective. We decide
whether an API usage contains a bug based on the MUBench dataset of confirmed
misuses, the official documentation of the APIs involved, and the source code and
call context surrounding the misuse. However, the MUBench dataset may in itself
contain false classifications. To prevent such false classifications from impacting our
results, we first reviewed all known misuses and their surrounding source code, and
removed any misuse we found to be a false positive.

We did not repeat the runs in our performance experiment, and thus the reported
differences in running times may have been influenced by external factors. Two such
factors are JVM warmup times and overhead added by Just-In-Time (JIT) compilation.
Since all of the runs take a long time to complete, we consider these factors to be
negligible. Since the experiment is run in a Docker container, the resulting measure-
ments may be influenced by overhead of its virtualisation. However, all of the runs
would suffer these same overheads, making the results comparable. There may be
other, unknown factors influencing the running times of the detectors, which we neg-
lected. Nevertheless, the purpose of this experiment is to obtain an general idea of the
performance differences between different strategies and inlining depths, rather than
specific running time ratios.

External Validity In our experiments P and R, we specifically select five projects
in which we previously observed false positives and false negatives due to a lack of
inter-procedural analysis. This may not generalise to other projects. To alleviate this
bias, we additionally select four projects based on MUDetect’s observed precision
and recall, in an attempt to obtain a more varied dataset. However, this still does not
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guarantee generalisation to other projects. It is our immediate future work to extend
these experiments to a larger dataset.

Similarly, the dataset of misuses employed in experiment RUB might not be rep-
resentative. To alleviate this, we used the full MUBench dataset, which contains a
large number of misuses found in mature Java projects. This state-of-the-art benchmark
contains misuses which cover a large range of general misuse classifications, which
allows us to assess our tool’s capabilities in great detail.

Finally, we only perform experiment Perf for one project. Obviously, this runs the
risk of not being representative. However, as mentioned previously, the purpose of this
experiment is to obtain a high-level view on the potential differences in running time as
a guideline, rather than statistically sound results. Additionally, since this experiment
takes a long time to run, we chose to run it at a higher inlining depth for one project,
rather than a lower inlining depth for multiple projects, so we can assess the increased
cost of inlining depths.

5.6 Conclusion

The experiments described in this chapter provide us important insights into the
capabilities of our approach. We find that our tool has a higher recall upper bound
than the baseline, which is because we do not remove self-usages. However, our tool
falls short on precision and recall, which is mainly due to its inability at detecting
misuses in usages of first-party APIs. We additionally find that inlining strategies
that eliminate less calls to inline lead to better precision and recall, since strategies
that perform more elimination may incorrectly remove important phenomena from
the mined patterns. Mining patterns intra-procedurally but also removing first-party
method calls from AUGs leads to very poor precision and recall, as evidenced by our
no inlining strategy. The other strategies, which do perform inlining, are successful at
capturing inter-procedural patterns, and can therefore detect more misuses, leading to
better precision and recall. We also observe that these strategies do not report violations
of missing pattern elements that are present in the surrounding call context, indicating
that our inter-procedural filter can effectively eliminate false positives.

However, inlining comes at a cost. Our detector takes a lot longer to run, due to the
great increase in graph sizes, especially at larger inlining depths. Additionally, we suffer
from a new type of false positive that arises when the inlining depth is too shallow,
where the detector incorrectly reports a missing pattern element which is present in a
transitively called method, but this method is not inlined since it exceeds the depth
cutoff. Furthermore, we suffer from many of the same limitations as MUDetect. A
majority of false positives are due to uncommon but correct API usages, which our
detector flags as a violation because they deviate from a mined pattern. We also fail to
identify misuses if the misuse is rooted in the concrete data value used as a parameter
to a call, since the AUG representation captures abstract types rather than concrete
values.

Our experimental evaluation identifies a number of important shortcomings, and
we thus devise ways to alleviate these. For instance, our inter-procedural violation
filtering algorithm does not consider the case where a callee contains an extension of a
pattern that is absent in the caller, on the assumption that such extensions are inlined
into the caller. This assumption breaks if the inlining depth is too shallow, and thus,
this filter should be adapted. Alternatively, we could opt to perform inter-procedural
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violation detection by dynamically inlining the graphs of the callee if a program
element is missing in the caller. Our approach additionally struggles in removing some
false positives related to self-usage, where an implementation uses its own API and
breaks patterns that are adhered to by its clients. In many cases, such false positives
are eliminated, yet this is limited if the implementation forms part of a subtype. In this
case, the AUG instead encodes the base type of the receiver of the calls to the method
containing the self-usage, and the actual method is never inlined. This leads to our
inter-procedural analysis not being able to detect larger usages, and thus not being able
to remove false positives. This problem could be alleviated by using more intelligent
static type analysis.

We also identify that common causes of false positives and false negatives are
due to representational issues. For example, AUGs, and by extension iAUGs, do not
capture concrete values, which are often a source of misuses but cannot be detected.
Additionally, due to operator abstraction, our approach cannot detect misuses related
to flipped conditions. Another source of false positives is uncommon alternative usage
scenarios, for example, a code snippet that directly checks the size of a collection rather
than checking whether an iterator has a next element. Since our approach removes
first-party method calls, it is also unable to detect misuses of a first-party API, which is
another prevalent type of misuse in the dataset.

We theorise that all four of these issues can partially be alleviated by using a richer
representation. For constant and literal data, we can instead capture the actual value
rather than just the abstract type. However, we then need to ensure that patterns remain
general. Thus, one option would be to capture such values as sets of values for each
supporting pattern fragment, and then performing additional mining, such as frequent
itemset mining, to determine which of the values are legal. For operators involved in a
condition, we could incorporate path conditions into the graph, where condition edges
are additionally labelled with the actual condition that selects the branch. Furthermore,
to alleviate issues of alternative ways to specify the same behaviour, the representation
should be made more abstract and focus on capturing program behaviour rather than
actual implementation. For example, instead of specifying that hasNext must be called
on an iterator before calling next, such a representation could specify that a collection
must be checked for the existence of an element before accessing this element. The way
in which this check is performed or the element is accessed does not make a difference,
it is more important to ensure such a check takes place. Finally, to alleviate the issue
of first-party API usages, we need to re-introduce method boundaries. However, this
would directly negate the method boundary-agnostic manner in which our patterns are
represented, resulting in less general patterns. Thus, future work should instead opt to
use a dual representation, which captures method boundaries when the call targets a
first-party API, but erases such boundaries if the called method is a helper method.

A final issue we identify is that an absolute minimum support value is often
insufficient to mine for representative patterns depending on the size of the project.
For example, for a small project containing little API usage, a high minimum support
value will not identify any meaningful patterns. For large projects containing a lot of
API usage, too low of a minimum support value may instead overfit towards a specific
usage. Thus, we theorise that our approach may benefit from using a relative minimum
support value, which can scale to detect meaningful patterns in API usages in projects
of arbitrary sizes.

In the presence of these challenges, we still observe that our detector correctly
identifies many misuses of third-party APIs. We assess that our inter-procedural
pattern mining pays off, since we are able to detect previously unknown misuses,
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and detect more misuses than our tool with inlining disabled. We also determine
our inter-procedural filter to be beneficial, since when inlining is enabled, our tool
never reports a missing program element which is present in the callers or callees of a
method.
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6 | Conclusion

Many of the state-of-the-art API misuse detection tools report false positive findings
due to a lack of inter-procedural analysis in their detection. Additionally, they may miss
actual misuses due to solely mining intra-procedural patterns, leading to an increase
in false negatives. Both of these limitations have a significant impact on the tool’s
precision and recall, rendering them difficult to use in practice.

In this dissertation, we presented our two main contributions to the field of static
API misuse detection to alleviate these issues: Graph inlining, which allows mining
for inter-procedural method boundary-agnostic patterns, and an inter-procedural
violation filtering algorithm that effectively removes false positives that occur due to
missing pattern elements that are present in the call context surrounding a method.
We additionally presented six inlining strategies that customise the manner in which
a method is extended to include the method bodies of its callees, differing in their
handling of recursive calls, duplicate calls, and calls that contain no direct API usage.

Our inlining algorithm transforms a set of intra-procedurally generated API usage
graphs into a set of inlined API usage graphs. For each such source graph, it identifies
calls to first-party methods, and selects calls to inline based on the provided inlining
strategy. Inlining a call consists of replacing the node that represents the call in the
graph by the graph of the called method, and relinking all of the edges connecting to
and from the original call node to the newly inlined graph in a code semantics aware
fashion. Then, we mine such inlined API usage graphs for patterns using a-priori
frequent subgraph mining, which provides us inter-procedural patterns. To allow
instances of these patterns to be scattered arbitrarily among implementation methods,
we erase method boundaries during inlining. Thus, the obtained patterns are general,
and can be used in various contexts.

We then use these patterns to perform violation detection. We apply a pattern
growth algorithm to explore a pattern and a target method to identify maximum
alternative overlaps, and consider an overlap to be a violation of the pattern if it is an
imperfect instance. Since patterns are inter-procedural, we may detect inter-procedural
violations, which may be false positives. Thus, we apply our general inter-procedural
violation filtering algorithm, which inspects a violation method’s callers and callees to
remove false positives and duplicate violations. Thus, in the end, we obtain a list of
likely violations that may be considered API misuses.

We empirically evaluated our approach on a public dataset of known API misuses.
Here, we select nine projects, five of which are known to cause inter-procedural
false positives and false negatives. We find that our approach effectively mines inter-
procedural patterns, allowing it to identify previously unknown misuses. We also
observe that it correctly removes false positives when a missing pattern element is
present in the caller or callee of a method. However, our experimental evaluation also
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identifies a number of important limitations of our approach.

Most importantly, our approach is unable to identify misuses in usages of first-
party APIs, since such calls are inlined rather than captured abstractly. Although our
inter-procedural filtering algorithm is able to remove false positives that are present
in other detectors, it fails to identify a new type of false positive, where our detector
reports missing elements that it would be able to detect in an inlined API usage graph,
but the call containing these elements is not present since it has not been selected
for inlining. We additionally determine a common cause of false positives to be API
usages that are correct, but implement their behaviour differently from the mined
patterns. A final, practical limitation of our approach is its fairly high cost. Since
frequent subgraph mining suffers from combinatorial explosion, detecting misuses
may take a long time for large graphs. Since inlining can grow graphs significantly,
this issue is more prevalent. We consider these limitations, among others, to be prime
subjects of subsequent research.

6.1 Open Research Avenues

As a final section in this dissertation, we present a number of possible directions
future work can take to improve upon our approach. Concretely, we identify the
need for more advanced filtering to further reduce the number of false positives,
including the new false positives introduced by our inlining, which we detail in
Section 6.1.1. We additionally identify that many other false positives and false negatives
can be considered representational issues, and urge for a more behaviour-oriented
representation in Section 6.1.2. In Section 6.1.3, we explore alternatives to using an
absolute minimum support threshold, to allow mining for patterns if the usage is
infrequent. We consider our detector’s long running times at higher inlining depths
in Section 6.1.4. We additionally identify that our experiments are limited and may
not generalise to other projects or datasets, and thus in Section 6.1.5, we recommend
to extend this evaluation to consider a larger dataset, more evaluation subjects, and a
more in-depth investigation. Finally, we explore the applicability of our approach in
other fields in Section 6.1.6.

6.1.1 Extending Inter-Procedural Filtering

Our current approach still struggles with eliminating certain types of inter-procedural
false positives from its findings. Concretely, there are some cases where it cannot detect
self-usages as false positives, and some cases where it incorrectly reports a violation of
a missing element if a method call has not been inlined.

The edge cases of self-usages that cannot be detected are caused by imprecise static
type information. It often occurs that a program constructs an instance of an anonymous
class, or a private inner class that extends a certain API class. Due to impreciseness
in typing information, our approach cannot identify calls to these methods as the
corresponding first-party method, and thus does not inline the call. This means that it
cannot inspect callers during inter-procedural filtering, and cannot detect the partial
usage in the self-usage to be extended by a caller.

The limitation of inlining depth leads to false positives that occur if a method is
not inlined into an indirect caller. Such cases are not filtered out by our algorithm
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since it does not consider the case where callees may extend a partial pattern present
in the caller, since it assumes this is naturally handled by inlining. When inlining is
performed at a too shallow depth, this assumption breaks, and false positives occur.
To alleviate these issues, the violation filter should be adapted to consider these cases.
Alternatively, a dynamic inlining technique may be used during violation detection,
which would inline a method on demand if it fails to find an expected element.

6.1.2 Behaviour-Oriented Representations

We find that many false negatives are caused by the AUG representation not capturing
concrete constant or literal values, or due to the abstraction over operators involved in
conditions. Additionally, the majority of false positives are caused by uncommon but
incorrect alternative usages, many of which involve an alternative way of implementing
behaviour that is equivalent to the pattern. Finally, since we do not capture calls to
first-party APIs in the iAUG representation, we are unable to detect a number of
misuses. We therefore believe future work should extend the AUG representation to
consider more such factors.

Capturing concrete values could potentially lead to multiple distinct patterns that
only differ in their data values. Thus, we should instead retain the abstract type
representation already present, but additionally capture the concrete values separately.
For instance, the values could be captured as itemsets, and legal values or combinations
of values could be mined using frequent itemset mining or association rule mining,
respectively. This would allow a detector to identify misuses that are rooted in the
argument values to a call.

In terms of operators, we find that the abstraction of relational and arithmetic
operators leads to a number of false negatives whose expected misuses involve flipped
conditions. We theorise that using a sort of path conditions in the labels of condition
edges could help identify such misuses, by distinguishing which branch corresponds
to which outcome of the condition.

For uncommon, but correct usages, we believe that future representations should
abstract over the concrete implementation of program behaviour, and instead focus on
this behaviour itself. In essence, we believe that a pattern stating that a collection must
always be submitted to a size check before an element is retrieved, is more meaningful,
general, and useful than a pattern stating that an iterator must always be verified
to have a next element before this element is retrieved. The former statement would
generalize to other collections, and to different ways of performing this check, whereas
the latter requires specifically the use of iterator methods, and could lead to false
positives in case of infrequent alternative usages.

Finally, to allow inlined AUGs to capture first-party method calls that form part of
an API, the method boundaries surrounding this API call should be re-introduced into
the representation. This leads to the difficult task of determining whether a method is
part of an API, or a helper method. However, a dual representation containing both
first-party API calls with method boundaries, as well as the inlined implementations of
these calls, would allow us to detect violations of both the first-party API, as well as
any underlying APIs.
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6.1.3 Relative Support Threshold

We find that in some projects, there is too little API usage for our tool to mine a
respective pattern. This is largely due to a too high minimum support value, which
prevents the pattern from being mined. To alleviate this, future work should look
into the adoption of a relative minimum support threshold that can scale to the size
of the project at hand and the number of API usages in this project. One potential
implementation of such a relative threshold could influence the miner to only extend
candidate patterns if at least x% of its supporting fragments can be extended in an
identical way. Not only would this then allow the tool to mine patterns when there are
too few correct usage examples, it could also identify infrequent alternative patterns
and thus reduce false positives.

6.1.4 Performance Improvements

There exist a lot of opportunities for optimisation in our tool. For instance, the construc-
tion phase, which is notoriously slow, could potentially benefit from more intelligent
data structure usages and caching of information. More importantly, the mining and
detection phases take an increasingly long time to perform their tasks as graphs grow.
This becomes problematic when inlining at larger depths, and thus, if inlining at such
larger depths is determined to be beneficial to the accuracy of mined patterns, these
phases should be improved.

In terms of mining, one solution would be to cluster the graphs of methods accord-
ing to the API calls made in the methods, which leads to a smaller corpus of methods
being provided to the miner, and thus, less work to perform. Additionally, the size
of the graphs could be decreased by using program slicing. Both of these approaches
are implemented in B igGroum (Mover et al., 2018), which efficiently mined patterns
from a large corpus of sources relating to a large API surface.

To improve the performance of violation detection, we could focus on detecting vi-
olations intra-procedurally, and later have the filtering algorithm remove false positives
that it can detect inter-procedurally. Another option would be to perform “puzzling”,
by detecting overlaps intra-procedurally and later inlining the overlaps in a similar
manner to the inlining performed to construct iAUGs.

6.1.5 Extended Evaluation

We only evaluated precision and recall on nine specifically selected projects. Thus,
this evaluation should be extended to include more projects to obtain more general
insights into the viability of our approach. It would also be interesting to include other
detectors into this evaluation, to obtain more points of comparison. A future evaluation
should also determine which scenarios lead to better results for each inlining strategy,
and investigate if and how they could be merged to retain the strengths of multiple
strategies.
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6.1.6 General Applicability

The contributions presented in this dissertation are general. Thus, it would be in-
teresting to apply them in other contexts. For example, inter-procedural method
boundary-agnostic API usage graph patterns may be a desirable representation in API
usage mining and recommendation. Similarly, our inter-procedural violation filtering
algorithm may be applied to other tools that have radically different representations.

6.2 Closing Statement

In this dissertation, we have presented two main contributions. Our inter-procedural
graph inlining algorithm, which embeds the graph-based representation of a callee
method in the graph of its callers in a code semantics-aware manner; and our general
inter-procedural violation filtering algorithm, which is able to remove inter-procedural
false positives and duplicate violations from the findings of API misuse detectors. Exper-
imental evaluation shows that our graph inlining is effective at mining inter-procedural
patterns, and that our filtering algorithm can correctly remove false positive violations
relating to missing API elements that are present in the call context surrounding a
method.
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